Files
ChatTTS-ui/app.py

407 lines
12 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import re
import sys
if sys.platform == "darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
import io
import json
import torchaudio
import wave
from pathlib import Path
print("Starting...")
import shutil
import time
import torch
import torch._dynamo
torch._dynamo.config.suppress_errors = True
torch._dynamo.config.cache_size_limit = 64
torch._dynamo.config.suppress_errors = True
torch.set_float32_matmul_precision("high")
os.environ["KMP_DUPLICATE_LIB_OK"] = "True"
import subprocess
import soundfile as sf
import ChatTTS
import datetime
from dotenv import load_dotenv
load_dotenv()
from flask import (
Flask,
request,
render_template,
jsonify,
send_from_directory,
send_file,
Response,
stream_with_context,
)
import logging
from logging.handlers import RotatingFileHandler
from waitress import serve
from random import random
from modelscope import snapshot_download
import numpy as np
import threading
from uilib.cfg import WEB_ADDRESS, SPEAKER_DIR, LOGS_DIR, WAVS_DIR, MODEL_DIR, ROOT_DIR
from uilib import utils, VERSION
from ChatTTS.utils import select_device
from uilib.utils import is_chinese_os, modelscope_status
merge_size = int(os.getenv("merge_size", 10))
env_lang = os.getenv("lang", "")
if env_lang == "zh":
is_cn = True
elif env_lang == "en":
is_cn = False
else:
is_cn = is_chinese_os()
if not shutil.which("ffmpeg"):
print("请先安装ffmpeg")
time.sleep(60)
exit()
chat = ChatTTS.Chat()
device_str = os.getenv("device", "default")
if device_str in ["default", "mps"]:
device = select_device(min_memory=2047, experimental=True if device_str == "mps" else False)
elif device_str == "cuda":
device = select_device(min_memory=2047)
elif device_str == "cpu":
device = torch.device("cpu")
chat.load(
source="local" if not os.path.exists(MODEL_DIR + "/DVAE_full.pt") else "custom",
custom_path=ROOT_DIR,
device=device,
compile=True if os.getenv("compile", "true").lower() != "false" else False,
)
# 配置日志
# 禁用 Werkzeug 默认的日志处理器
log = logging.getLogger("werkzeug")
log.handlers[:] = []
log.setLevel(logging.WARNING)
app = Flask(
__name__,
static_folder=ROOT_DIR + "/static",
static_url_path="/static",
template_folder=ROOT_DIR + "/templates",
)
root_log = logging.getLogger() # Flask的根日志记录器
root_log.handlers = []
root_log.setLevel(logging.WARNING)
app.logger.setLevel(logging.WARNING)
# 创建 RotatingFileHandler 对象,设置写入的文件路径和大小限制
file_handler = RotatingFileHandler(
LOGS_DIR + f'/{datetime.datetime.now().strftime("%Y%m%d")}.log',
maxBytes=1024 * 1024,
backupCount=5,
)
# 创建日志的格式
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
# 设置文件处理器的级别和格式
file_handler.setLevel(logging.WARNING)
file_handler.setFormatter(formatter)
# 将文件处理器添加到日志记录器中
app.logger.addHandler(file_handler)
app.jinja_env.globals.update(enumerate=enumerate)
@app.route("/static/<path:filename>")
def static_files(filename):
return send_from_directory(app.config["STATIC_FOLDER"], filename)
@app.route("/")
def index():
speakers = utils.get_speakers()
return render_template(
f"index{'' if is_cn else 'en'}.html", weburl=WEB_ADDRESS, speakers=speakers, version=VERSION
)
# 根据文本返回tts结果返回 filename=文件名 url=可下载地址
# 请求端根据需要自行选择使用哪个
# params:
#
# text:待合成文字
# prompt
# voice音色
# custom_voice自定义音色值
# skip_refine: 1=跳过refine_text阶段0=不跳过
# temperature
# top_p
# top_k
# speed
# text_seed
# refine_max_new_token
# infer_max_new_token
# wav
audio_queue = []
@app.route("/tts", methods=["GET", "POST"])
def tts():
global audio_queue
# 原始字符串
text = request.args.get("text", "").strip() or request.form.get("text", "").strip()
prompt = request.args.get("prompt", "").strip() or request.form.get("prompt", "")
# 默认值
defaults = {
"custom_voice": 0,
"voice": "2222",
"temperature": 0.3,
"top_p": 0.7,
"top_k": 20,
"skip_refine": 0,
"speed": 5,
"text_seed": 42,
"refine_max_new_token": 384,
"infer_max_new_token": 2048,
"wav": 0,
"is_stream": 0,
}
# 获取
custom_voice = utils.get_parameter(request, "custom_voice", defaults["custom_voice"], int)
voice = (
str(custom_voice)
if custom_voice > 0
else utils.get_parameter(request, "voice", defaults["voice"], str)
)
temperature = utils.get_parameter(request, "temperature", defaults["temperature"], float)
top_p = utils.get_parameter(request, "top_p", defaults["top_p"], float)
top_k = utils.get_parameter(request, "top_k", defaults["top_k"], int)
skip_refine = utils.get_parameter(request, "skip_refine", defaults["skip_refine"], int)
is_stream = utils.get_parameter(request, "is_stream", defaults["is_stream"], int)
speed = utils.get_parameter(request, "speed", defaults["speed"], int)
text_seed = utils.get_parameter(request, "text_seed", defaults["text_seed"], int)
refine_max_new_token = utils.get_parameter(
request, "refine_max_new_token", defaults["refine_max_new_token"], int
)
infer_max_new_token = utils.get_parameter(
request, "infer_max_new_token", defaults["infer_max_new_token"], int
)
wav = utils.get_parameter(request, "wav", defaults["wav"], int)
app.logger.info(f"[tts]{text=}\n{voice=},{skip_refine=}\n")
if not text:
return jsonify({"code": 1, "msg": "text params lost"})
# 固定音色
rand_spk = None
# voice可能是 {voice}.csv or {voice}.pt or number
voice = voice.replace(".csv", ".pt")
seed_path = f"{SPEAKER_DIR}/{voice}"
print(f"{voice=}")
# if voice.endswith('.csv') and os.path.exists(seed_path):
# rand_spk=utils.load_speaker(voice)
# print(f'当前使用音色 {seed_path=}')
# el
if voice.endswith(".pt") and os.path.exists(seed_path):
# 如果.env中未指定设备则使用 ChatTTS相同算法找设备否则使用指定设备
rand_spk = torch.load(seed_path, map_location=device)
print(f"当前使用音色 {seed_path=}")
# 否则 判断是否存在 {voice}.csv
# elif os.path.exists(f'{SPEAKER_DIR}/{voice}.csv'):
# rand_spk=utils.load_speaker(voice)
# print(f'当前使用音色 {SPEAKER_DIR}/{voice}.csv')
if rand_spk is None:
print(f"当前使用音色根据seed={voice}获取随机音色")
voice_int = re.findall(r"^(\d+)", voice)
if len(voice_int) > 0:
voice = int(voice_int[0])
else:
voice = 2222
torch.manual_seed(voice)
# std, mean = chat.sample_random_speaker
rand_spk = chat.sample_random_speaker()
# rand_spk = torch.randn(768) * std + mean
# 保存音色
torch.save(rand_spk, f"{SPEAKER_DIR}/{voice}.pt")
# utils.save_speaker(voice,rand_spk)
audio_files = []
start_time = time.time()
# 中英按语言分行
text_list = [t.strip() for t in text.split("\n") if t.strip()]
new_text = utils.split_text(text_list)
if text_seed > 0:
torch.manual_seed(text_seed)
params_infer_code = ChatTTS.Chat.InferCodeParams(
spk_emb=rand_spk,
prompt=f"[speed_{speed}]",
top_P=top_p,
top_K=top_k,
temperature=temperature,
max_new_token=infer_max_new_token,
)
params_refine_text = ChatTTS.Chat.RefineTextParams(
prompt=prompt,
top_P=top_p,
top_K=top_k,
temperature=temperature,
max_new_token=refine_max_new_token,
)
print(f"{prompt=}")
# 将少于30个字符的行同其他行拼接
retext = []
short_text = ""
for it in new_text:
if len(it) < 30:
short_text += f"{it} [uv_break] "
if len(short_text) > 30:
retext.append(short_text)
short_text = ""
else:
retext.append(short_text + it)
short_text = ""
if len(short_text) > 30 or len(retext) < 1:
retext.append(short_text)
elif short_text:
retext[-1] += f" [uv_break] {short_text}"
new_text = retext
new_text_list = [new_text[i : i + merge_size] for i in range(0, len(new_text), merge_size)]
filename_list = []
audio_time = 0
inter_time = 0
for i, te in enumerate(new_text_list):
print(f"{te=}")
wavs = chat.infer(
te,
# use_decoder=False,
stream=True if is_stream == 1 else False,
skip_refine_text=skip_refine,
do_text_normalization=False,
do_homophone_replacement=True,
params_refine_text=params_refine_text,
params_infer_code=params_infer_code,
)
end_time = time.time()
inference_time = end_time - start_time
inference_time_rounded = round(inference_time, 2)
inter_time += inference_time_rounded
print(f"推理时长: {inference_time_rounded}")
for j, w in enumerate(wavs):
filename = (
datetime.datetime.now().strftime("%H%M%S_")
+ f"use{inference_time_rounded}s-seed{voice}-te{temperature}-tp{top_p}-tk{top_k}-textlen{len(text)}-{str(random())[2:7]}"
+ f"-{i}-{j}.wav"
)
filename_list.append(filename)
torchaudio.save(WAVS_DIR + "/" + filename, torch.from_numpy(w).unsqueeze(0), 24000)
txt_tmp = "\n".join([f"file '{WAVS_DIR}/{it}'" for it in filename_list])
txt_name = f"{time.time()}.txt"
with open(f"{WAVS_DIR}/{txt_name}", "w", encoding="utf-8") as f:
f.write(txt_tmp)
outname = (
datetime.datetime.now().strftime("%H%M%S_")
+ f"use{inter_time}s-audio{audio_time}s-seed{voice}-te{temperature}-tp{top_p}-tk{top_k}-textlen{len(text)}-{str(random())[2:7]}"
+ "-merge.wav"
)
try:
subprocess.run(
[
"ffmpeg",
"-hide_banner",
"-ignore_unknown",
"-y",
"-f",
"concat",
"-safe",
"0",
"-i",
f"{WAVS_DIR}/{txt_name}",
"-c:a",
"copy",
WAVS_DIR + "/" + outname,
],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
encoding="utf-8",
check=True,
text=True,
creationflags=0 if sys.platform != "win32" else subprocess.CREATE_NO_WINDOW,
)
except Exception as e:
return jsonify({"code": 1, "msg": str(e)})
audio_path = WAVS_DIR + "/" + outname
try:
# 使用 soundfile
audio_info = sf.info(audio_path)
audio_duration = round(audio_info.duration, 2)
except Exception as e:
print(f"计算音频时长失败: {e}")
audio_duration = -1
relative_url = f"/static/wavs/{outname}"
audio_files.append(
{
"filename": audio_path,
"url": f"http://{request.host}{relative_url}",
"relative_url": relative_url,
"inference_time": round(inter_time, 2),
"audio_duration": audio_duration,
}
)
result_dict = {"code": 0, "msg": "ok", "audio_files": audio_files}
try:
if torch.cuda.is_available():
torch.cuda.empty_cache()
except Exception:
pass
# 兼容pyVideoTrans接口调用
if len(audio_files) == 1:
result_dict["filename"] = audio_files[0]["filename"]
result_dict["url"] = audio_files[0]["url"]
result_dict["relative_url"] = audio_files[0]["relative_url"]
if wav > 0:
return send_file(audio_files[0]["filename"], mimetype="audio/x-wav")
else:
return jsonify(result_dict)
@app.route("/clear_wavs", methods=["POST"])
def clear_wavs():
dir_path = "static/wavs" # wav音频文件存储目录
success, message = utils.ClearWav(dir_path)
if success:
return jsonify({"code": 0, "msg": message})
else:
return jsonify({"code": 1, "msg": message})
try:
host = WEB_ADDRESS.split(":")
print(f"Start:{WEB_ADDRESS}")
threading.Thread(target=utils.openweb, args=(f"http://{WEB_ADDRESS}",)).start()
serve(app, host=host[0], port=int(host[1]))
except Exception as e:
print(e)