mirror of
https://github.com/FFmpeg/FFmpeg.git
synced 2026-01-12 00:06:51 +08:00
I think this is ultimately a better home, since the semantics of this are not really tied to optimization itself; and because I want to make it an explicitly suported part of the user-facing API (rather than just an internal-use field). The secondary motivating reason here is that I intend to use internal helpers of `ops.c` inside the next commit. (Though this is a weak reason on its own, and not sufficient to justify this move by itself.)
722 lines
22 KiB
C
722 lines
22 KiB
C
/**
|
|
* Copyright (C) 2025 Niklas Haas
|
|
*
|
|
* This file is part of FFmpeg.
|
|
*
|
|
* FFmpeg is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* FFmpeg is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with FFmpeg; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "libavutil/avassert.h"
|
|
#include "libavutil/bswap.h"
|
|
#include "libavutil/rational.h"
|
|
|
|
#include "ops.h"
|
|
#include "ops_internal.h"
|
|
|
|
#define RET(x) \
|
|
do { \
|
|
if ((ret = (x)) < 0) \
|
|
return ret; \
|
|
} while (0)
|
|
|
|
/**
|
|
* Try to commute a clear op with the next operation. Makes any adjustments
|
|
* to the operations as needed, but does not perform the actual commutation.
|
|
*
|
|
* Returns whether successful.
|
|
*/
|
|
static bool op_commute_clear(SwsOp *op, SwsOp *next)
|
|
{
|
|
av_assert1(op->op == SWS_OP_CLEAR);
|
|
switch (next->op) {
|
|
case SWS_OP_CONVERT:
|
|
op->type = next->convert.to;
|
|
/* fall through */
|
|
case SWS_OP_LSHIFT:
|
|
case SWS_OP_RSHIFT:
|
|
case SWS_OP_DITHER:
|
|
case SWS_OP_MIN:
|
|
case SWS_OP_MAX:
|
|
case SWS_OP_SCALE:
|
|
case SWS_OP_READ:
|
|
case SWS_OP_SWIZZLE:
|
|
ff_sws_apply_op_q(next, op->c.q4);
|
|
return true;
|
|
case SWS_OP_INVALID:
|
|
case SWS_OP_SWAP_BYTES:
|
|
case SWS_OP_WRITE:
|
|
case SWS_OP_LINEAR:
|
|
case SWS_OP_PACK:
|
|
case SWS_OP_UNPACK:
|
|
case SWS_OP_CLEAR:
|
|
return false;
|
|
case SWS_OP_TYPE_NB:
|
|
break;
|
|
}
|
|
|
|
av_unreachable("Invalid operation type!");
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Try to commute a swizzle op with the next operation. Makes any adjustments
|
|
* to the operations as needed, but does not perform the actual commutation.
|
|
*
|
|
* Returns whether successful.
|
|
*/
|
|
static bool op_commute_swizzle(SwsOp *op, SwsOp *next)
|
|
{
|
|
bool seen[4] = {0};
|
|
|
|
av_assert1(op->op == SWS_OP_SWIZZLE);
|
|
switch (next->op) {
|
|
case SWS_OP_CONVERT:
|
|
op->type = next->convert.to;
|
|
/* fall through */
|
|
case SWS_OP_SWAP_BYTES:
|
|
case SWS_OP_LSHIFT:
|
|
case SWS_OP_RSHIFT:
|
|
case SWS_OP_SCALE:
|
|
return true;
|
|
|
|
/**
|
|
* We can commute per-channel ops only if the per-channel constants are the
|
|
* same for all duplicated channels; e.g.:
|
|
* SWIZZLE {0, 0, 0, 3}
|
|
* NEXT {x, x, x, w}
|
|
* ->
|
|
* NEXT {x, _, _, w}
|
|
* SWIZZLE {0, 0, 0, 3}
|
|
*/
|
|
case SWS_OP_MIN:
|
|
case SWS_OP_MAX: {
|
|
const SwsConst c = next->c;
|
|
for (int i = 0; i < 4; i++) {
|
|
if (next->comps.unused[i])
|
|
continue;
|
|
const int j = op->swizzle.in[i];
|
|
if (seen[j] && av_cmp_q(next->c.q4[j], c.q4[i]))
|
|
return false;
|
|
next->c.q4[j] = c.q4[i];
|
|
seen[j] = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
case SWS_OP_DITHER: {
|
|
const SwsDitherOp d = next->dither;
|
|
for (int i = 0; i < 4; i++) {
|
|
if (next->comps.unused[i])
|
|
continue;
|
|
const int j = op->swizzle.in[i];
|
|
if (seen[j] && next->dither.y_offset[j] != d.y_offset[i])
|
|
return false;
|
|
next->dither.y_offset[j] = d.y_offset[i];
|
|
seen[j] = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
case SWS_OP_INVALID:
|
|
case SWS_OP_READ:
|
|
case SWS_OP_WRITE:
|
|
case SWS_OP_SWIZZLE:
|
|
case SWS_OP_CLEAR:
|
|
case SWS_OP_LINEAR:
|
|
case SWS_OP_PACK:
|
|
case SWS_OP_UNPACK:
|
|
return false;
|
|
case SWS_OP_TYPE_NB:
|
|
break;
|
|
}
|
|
|
|
av_unreachable("Invalid operation type!");
|
|
return false;
|
|
}
|
|
|
|
/* returns log2(x) only if x is a power of two, or 0 otherwise */
|
|
static int exact_log2(const int x)
|
|
{
|
|
int p;
|
|
if (x <= 0)
|
|
return 0;
|
|
p = av_log2(x);
|
|
return (1 << p) == x ? p : 0;
|
|
}
|
|
|
|
static int exact_log2_q(const AVRational x)
|
|
{
|
|
if (x.den == 1)
|
|
return exact_log2(x.num);
|
|
else if (x.num == 1)
|
|
return -exact_log2(x.den);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* If a linear operation can be reduced to a scalar multiplication, returns
|
|
* the corresponding scaling factor, or 0 otherwise.
|
|
*/
|
|
static bool extract_scalar(const SwsLinearOp *c, SwsComps prev, SwsComps next,
|
|
SwsConst *out_scale)
|
|
{
|
|
SwsConst scale = {0};
|
|
|
|
/* There are components not on the main diagonal */
|
|
if (c->mask & ~SWS_MASK_DIAG4)
|
|
return false;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
const AVRational s = c->m[i][i];
|
|
if ((prev.flags[i] & SWS_COMP_ZERO) || next.unused[i])
|
|
continue;
|
|
if (scale.q.den && av_cmp_q(s, scale.q))
|
|
return false;
|
|
scale.q = s;
|
|
}
|
|
|
|
if (scale.q.den)
|
|
*out_scale = scale;
|
|
return scale.q.den;
|
|
}
|
|
|
|
/* Extracts an integer clear operation (subset) from the given linear op. */
|
|
static bool extract_constant_rows(SwsLinearOp *c, SwsComps prev,
|
|
SwsConst *out_clear)
|
|
{
|
|
SwsConst clear = {0};
|
|
bool ret = false;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
bool const_row = c->m[i][4].den == 1; /* offset is integer */
|
|
for (int j = 0; j < 4; j++) {
|
|
const_row &= c->m[i][j].num == 0 || /* scalar is zero */
|
|
(prev.flags[j] & SWS_COMP_ZERO); /* input is zero */
|
|
}
|
|
if (const_row && (c->mask & SWS_MASK_ROW(i))) {
|
|
clear.q4[i] = c->m[i][4];
|
|
for (int j = 0; j < 5; j++)
|
|
c->m[i][j] = Q(i == j);
|
|
c->mask &= ~SWS_MASK_ROW(i);
|
|
ret = true;
|
|
}
|
|
}
|
|
|
|
if (ret)
|
|
*out_clear = clear;
|
|
return ret;
|
|
}
|
|
|
|
/* Unswizzle a linear operation by aligning single-input rows with
|
|
* their corresponding diagonal */
|
|
static bool extract_swizzle(SwsLinearOp *op, SwsComps prev, SwsSwizzleOp *out_swiz)
|
|
{
|
|
SwsSwizzleOp swiz = SWS_SWIZZLE(0, 1, 2, 3);
|
|
SwsLinearOp c = *op;
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
int idx = -1;
|
|
for (int j = 0; j < 4; j++) {
|
|
if (!c.m[i][j].num || (prev.flags[j] & SWS_COMP_ZERO))
|
|
continue;
|
|
if (idx >= 0)
|
|
return false; /* multiple inputs */
|
|
idx = j;
|
|
}
|
|
|
|
if (idx >= 0 && idx != i) {
|
|
/* Move coefficient to the diagonal */
|
|
c.m[i][i] = c.m[i][idx];
|
|
c.m[i][idx] = Q(0);
|
|
swiz.in[i] = idx;
|
|
}
|
|
}
|
|
|
|
if (swiz.mask == SWS_SWIZZLE(0, 1, 2, 3).mask)
|
|
return false; /* no swizzle was identified */
|
|
|
|
c.mask = ff_sws_linear_mask(c);
|
|
*out_swiz = swiz;
|
|
*op = c;
|
|
return true;
|
|
}
|
|
|
|
int ff_sws_op_list_optimize(SwsOpList *ops)
|
|
{
|
|
int ret;
|
|
|
|
retry:
|
|
ff_sws_op_list_update_comps(ops);
|
|
|
|
/* Apply all in-place optimizations (that do not re-order the list) */
|
|
for (int n = 0; n < ops->num_ops; n++) {
|
|
SwsOp dummy = {0};
|
|
SwsOp *op = &ops->ops[n];
|
|
SwsOp *prev = n ? &ops->ops[n - 1] : &dummy;
|
|
SwsOp *next = n + 1 < ops->num_ops ? &ops->ops[n + 1] : &dummy;
|
|
|
|
/* common helper variable */
|
|
bool noop = true;
|
|
|
|
switch (op->op) {
|
|
case SWS_OP_READ:
|
|
/* Optimized further into refcopy / memcpy */
|
|
if (next->op == SWS_OP_WRITE &&
|
|
next->rw.elems == op->rw.elems &&
|
|
next->rw.packed == op->rw.packed &&
|
|
next->rw.frac == op->rw.frac)
|
|
{
|
|
ff_sws_op_list_remove_at(ops, n, 2);
|
|
av_assert1(ops->num_ops == 0);
|
|
return 0;
|
|
}
|
|
|
|
/* Skip reading extra unneeded components */
|
|
if (!op->rw.packed) {
|
|
int needed = op->rw.elems;
|
|
while (needed > 0 && next->comps.unused[needed - 1])
|
|
needed--;
|
|
if (op->rw.elems != needed) {
|
|
op->rw.elems = needed;
|
|
goto retry;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case SWS_OP_SWAP_BYTES:
|
|
/* Redundant (double) swap */
|
|
if (next->op == SWS_OP_SWAP_BYTES) {
|
|
ff_sws_op_list_remove_at(ops, n, 2);
|
|
goto retry;
|
|
}
|
|
break;
|
|
|
|
case SWS_OP_UNPACK:
|
|
/* Redundant unpack+pack */
|
|
if (next->op == SWS_OP_PACK && next->type == op->type &&
|
|
next->pack.pattern[0] == op->pack.pattern[0] &&
|
|
next->pack.pattern[1] == op->pack.pattern[1] &&
|
|
next->pack.pattern[2] == op->pack.pattern[2] &&
|
|
next->pack.pattern[3] == op->pack.pattern[3])
|
|
{
|
|
ff_sws_op_list_remove_at(ops, n, 2);
|
|
goto retry;
|
|
}
|
|
break;
|
|
|
|
case SWS_OP_LSHIFT:
|
|
case SWS_OP_RSHIFT:
|
|
/* Two shifts in the same direction */
|
|
if (next->op == op->op) {
|
|
op->c.u += next->c.u;
|
|
ff_sws_op_list_remove_at(ops, n + 1, 1);
|
|
goto retry;
|
|
}
|
|
|
|
/* No-op shift */
|
|
if (!op->c.u) {
|
|
ff_sws_op_list_remove_at(ops, n, 1);
|
|
goto retry;
|
|
}
|
|
break;
|
|
|
|
case SWS_OP_CLEAR:
|
|
for (int i = 0; i < 4; i++) {
|
|
if (!op->c.q4[i].den)
|
|
continue;
|
|
|
|
if ((prev->comps.flags[i] & SWS_COMP_ZERO) &&
|
|
!(prev->comps.flags[i] & SWS_COMP_GARBAGE) &&
|
|
op->c.q4[i].num == 0)
|
|
{
|
|
/* Redundant clear-to-zero of zero component */
|
|
op->c.q4[i].den = 0;
|
|
} else if (next->comps.unused[i]) {
|
|
/* Unnecessary clear of unused component */
|
|
op->c.q4[i] = (AVRational) {0, 0};
|
|
} else if (op->c.q4[i].den) {
|
|
noop = false;
|
|
}
|
|
}
|
|
|
|
if (noop) {
|
|
ff_sws_op_list_remove_at(ops, n, 1);
|
|
goto retry;
|
|
}
|
|
|
|
/* Transitive clear */
|
|
if (next->op == SWS_OP_CLEAR) {
|
|
for (int i = 0; i < 4; i++) {
|
|
if (next->c.q4[i].den)
|
|
op->c.q4[i] = next->c.q4[i];
|
|
}
|
|
ff_sws_op_list_remove_at(ops, n + 1, 1);
|
|
goto retry;
|
|
}
|
|
break;
|
|
|
|
case SWS_OP_SWIZZLE:
|
|
for (int i = 0; i < 4; i++) {
|
|
if (next->comps.unused[i])
|
|
continue;
|
|
if (op->swizzle.in[i] != i)
|
|
noop = false;
|
|
}
|
|
|
|
/* Identity swizzle */
|
|
if (noop) {
|
|
ff_sws_op_list_remove_at(ops, n, 1);
|
|
goto retry;
|
|
}
|
|
|
|
/* Transitive swizzle */
|
|
if (next->op == SWS_OP_SWIZZLE) {
|
|
const SwsSwizzleOp orig = op->swizzle;
|
|
for (int i = 0; i < 4; i++)
|
|
op->swizzle.in[i] = orig.in[next->swizzle.in[i]];
|
|
ff_sws_op_list_remove_at(ops, n + 1, 1);
|
|
goto retry;
|
|
}
|
|
break;
|
|
|
|
case SWS_OP_CONVERT:
|
|
/* No-op conversion */
|
|
if (op->type == op->convert.to) {
|
|
ff_sws_op_list_remove_at(ops, n, 1);
|
|
goto retry;
|
|
}
|
|
|
|
/* Transitive conversion */
|
|
if (next->op == SWS_OP_CONVERT &&
|
|
op->convert.expand == next->convert.expand)
|
|
{
|
|
av_assert1(op->convert.to == next->type);
|
|
op->convert.to = next->convert.to;
|
|
ff_sws_op_list_remove_at(ops, n + 1, 1);
|
|
goto retry;
|
|
}
|
|
|
|
/* Conversion followed by integer expansion */
|
|
if (next->op == SWS_OP_SCALE && !op->convert.expand &&
|
|
!av_cmp_q(next->c.q, ff_sws_pixel_expand(op->type, op->convert.to)))
|
|
{
|
|
op->convert.expand = true;
|
|
ff_sws_op_list_remove_at(ops, n + 1, 1);
|
|
goto retry;
|
|
}
|
|
break;
|
|
|
|
case SWS_OP_MIN:
|
|
for (int i = 0; i < 4; i++) {
|
|
if (next->comps.unused[i] || !op->c.q4[i].den)
|
|
continue;
|
|
if (av_cmp_q(op->c.q4[i], prev->comps.max[i]) < 0)
|
|
noop = false;
|
|
}
|
|
|
|
if (noop) {
|
|
ff_sws_op_list_remove_at(ops, n, 1);
|
|
goto retry;
|
|
}
|
|
break;
|
|
|
|
case SWS_OP_MAX:
|
|
for (int i = 0; i < 4; i++) {
|
|
if (next->comps.unused[i] || !op->c.q4[i].den)
|
|
continue;
|
|
if (av_cmp_q(prev->comps.min[i], op->c.q4[i]) < 0)
|
|
noop = false;
|
|
}
|
|
|
|
if (noop) {
|
|
ff_sws_op_list_remove_at(ops, n, 1);
|
|
goto retry;
|
|
}
|
|
break;
|
|
|
|
case SWS_OP_DITHER:
|
|
for (int i = 0; i < 4; i++) {
|
|
noop &= (prev->comps.flags[i] & SWS_COMP_EXACT) ||
|
|
next->comps.unused[i];
|
|
}
|
|
|
|
if (noop) {
|
|
ff_sws_op_list_remove_at(ops, n, 1);
|
|
goto retry;
|
|
}
|
|
break;
|
|
|
|
case SWS_OP_LINEAR: {
|
|
SwsSwizzleOp swizzle;
|
|
SwsConst c;
|
|
|
|
/* No-op (identity) linear operation */
|
|
if (!op->lin.mask) {
|
|
ff_sws_op_list_remove_at(ops, n, 1);
|
|
goto retry;
|
|
}
|
|
|
|
if (next->op == SWS_OP_LINEAR) {
|
|
/* 5x5 matrix multiplication after appending [ 0 0 0 0 1 ] */
|
|
const SwsLinearOp m1 = op->lin;
|
|
const SwsLinearOp m2 = next->lin;
|
|
for (int i = 0; i < 4; i++) {
|
|
for (int j = 0; j < 5; j++) {
|
|
AVRational sum = Q(0);
|
|
for (int k = 0; k < 4; k++)
|
|
sum = av_add_q(sum, av_mul_q(m2.m[i][k], m1.m[k][j]));
|
|
if (j == 4) /* m1.m[4][j] == 1 */
|
|
sum = av_add_q(sum, m2.m[i][4]);
|
|
op->lin.m[i][j] = sum;
|
|
}
|
|
}
|
|
op->lin.mask = ff_sws_linear_mask(op->lin);
|
|
ff_sws_op_list_remove_at(ops, n + 1, 1);
|
|
goto retry;
|
|
}
|
|
|
|
/* Optimize away zero columns */
|
|
for (int j = 0; j < 4; j++) {
|
|
const uint32_t col = SWS_MASK_COL(j);
|
|
if (!(prev->comps.flags[j] & SWS_COMP_ZERO) || !(op->lin.mask & col))
|
|
continue;
|
|
for (int i = 0; i < 4; i++)
|
|
op->lin.m[i][j] = Q(i == j);
|
|
op->lin.mask &= ~col;
|
|
goto retry;
|
|
}
|
|
|
|
/* Optimize away unused rows */
|
|
for (int i = 0; i < 4; i++) {
|
|
const uint32_t row = SWS_MASK_ROW(i);
|
|
if (!next->comps.unused[i] || !(op->lin.mask & row))
|
|
continue;
|
|
for (int j = 0; j < 5; j++)
|
|
op->lin.m[i][j] = Q(i == j);
|
|
op->lin.mask &= ~row;
|
|
goto retry;
|
|
}
|
|
|
|
/* Convert constant rows to explicit clear instruction */
|
|
if (extract_constant_rows(&op->lin, prev->comps, &c)) {
|
|
RET(ff_sws_op_list_insert_at(ops, n + 1, &(SwsOp) {
|
|
.op = SWS_OP_CLEAR,
|
|
.type = op->type,
|
|
.comps = op->comps,
|
|
.c = c,
|
|
}));
|
|
goto retry;
|
|
}
|
|
|
|
/* Multiplication by scalar constant */
|
|
if (extract_scalar(&op->lin, prev->comps, next->comps, &c)) {
|
|
op->op = SWS_OP_SCALE;
|
|
op->c = c;
|
|
goto retry;
|
|
}
|
|
|
|
/* Swizzle by fixed pattern */
|
|
if (extract_swizzle(&op->lin, prev->comps, &swizzle)) {
|
|
RET(ff_sws_op_list_insert_at(ops, n, &(SwsOp) {
|
|
.op = SWS_OP_SWIZZLE,
|
|
.type = op->type,
|
|
.swizzle = swizzle,
|
|
}));
|
|
goto retry;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SWS_OP_SCALE: {
|
|
const int factor2 = exact_log2_q(op->c.q);
|
|
|
|
/* No-op scaling */
|
|
if (op->c.q.num == 1 && op->c.q.den == 1) {
|
|
ff_sws_op_list_remove_at(ops, n, 1);
|
|
goto retry;
|
|
}
|
|
|
|
/* Scaling by exact power of two */
|
|
if (factor2 && ff_sws_pixel_type_is_int(op->type)) {
|
|
op->op = factor2 > 0 ? SWS_OP_LSHIFT : SWS_OP_RSHIFT;
|
|
op->c.u = FFABS(factor2);
|
|
goto retry;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Push clears to the back to void any unused components */
|
|
for (int n = 1; n < ops->num_ops - 1; n++) { /* exclude READ/WRITE */
|
|
SwsOp *op = &ops->ops[n];
|
|
SwsOp *next = &ops->ops[n + 1];
|
|
|
|
switch (op->op) {
|
|
case SWS_OP_CLEAR:
|
|
if (op_commute_clear(op, next)) {
|
|
FFSWAP(SwsOp, *op, *next);
|
|
goto retry;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Apply any remaining preferential re-ordering optimizations; do these
|
|
* last because they are more likely to block other optimizations if done
|
|
* too aggressively */
|
|
for (int n = 1; n < ops->num_ops - 1; n++) { /* exclude READ/WRITE */
|
|
SwsOp *op = &ops->ops[n];
|
|
SwsOp *prev = &ops->ops[n - 1];
|
|
SwsOp *next = &ops->ops[n + 1];
|
|
|
|
switch (op->op) {
|
|
case SWS_OP_SWIZZLE: {
|
|
bool seen[4] = {0};
|
|
bool has_duplicates = false;
|
|
for (int i = 0; i < 4; i++) {
|
|
if (next->comps.unused[i])
|
|
continue;
|
|
has_duplicates |= seen[op->swizzle.in[i]];
|
|
seen[op->swizzle.in[i]] = true;
|
|
}
|
|
|
|
/* Try to push swizzles with duplicates towards the output */
|
|
if (has_duplicates && op_commute_swizzle(op, next)) {
|
|
FFSWAP(SwsOp, *op, *next);
|
|
goto retry;
|
|
}
|
|
|
|
/* Move swizzle out of the way between two converts so that
|
|
* they may be merged */
|
|
if (prev->op == SWS_OP_CONVERT && next->op == SWS_OP_CONVERT) {
|
|
op->type = next->convert.to;
|
|
FFSWAP(SwsOp, *op, *next);
|
|
goto retry;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SWS_OP_SCALE:
|
|
/* Scaling by integer before conversion to int */
|
|
if (op->c.q.den == 1 && next->op == SWS_OP_CONVERT &&
|
|
ff_sws_pixel_type_is_int(next->convert.to))
|
|
{
|
|
op->type = next->convert.to;
|
|
FFSWAP(SwsOp, *op, *next);
|
|
goto retry;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ff_sws_solve_shuffle(const SwsOpList *const ops, uint8_t shuffle[],
|
|
int size, uint8_t clear_val,
|
|
int *read_bytes, int *write_bytes)
|
|
{
|
|
const SwsOp read = ops->ops[0];
|
|
const int read_size = ff_sws_pixel_type_size(read.type);
|
|
uint32_t mask[4] = {0};
|
|
|
|
if (!ops->num_ops || read.op != SWS_OP_READ)
|
|
return AVERROR(EINVAL);
|
|
if (read.rw.frac || (!read.rw.packed && read.rw.elems > 1))
|
|
return AVERROR(ENOTSUP);
|
|
|
|
for (int i = 0; i < read.rw.elems; i++)
|
|
mask[i] = 0x01010101 * i * read_size + 0x03020100;
|
|
|
|
for (int opidx = 1; opidx < ops->num_ops; opidx++) {
|
|
const SwsOp *op = &ops->ops[opidx];
|
|
switch (op->op) {
|
|
case SWS_OP_SWIZZLE: {
|
|
uint32_t orig[4] = { mask[0], mask[1], mask[2], mask[3] };
|
|
for (int i = 0; i < 4; i++)
|
|
mask[i] = orig[op->swizzle.in[i]];
|
|
break;
|
|
}
|
|
|
|
case SWS_OP_SWAP_BYTES:
|
|
for (int i = 0; i < 4; i++) {
|
|
switch (ff_sws_pixel_type_size(op->type)) {
|
|
case 2: mask[i] = av_bswap16(mask[i]); break;
|
|
case 4: mask[i] = av_bswap32(mask[i]); break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case SWS_OP_CLEAR:
|
|
for (int i = 0; i < 4; i++) {
|
|
if (!op->c.q4[i].den)
|
|
continue;
|
|
if (op->c.q4[i].num != 0 || !clear_val)
|
|
return AVERROR(ENOTSUP);
|
|
mask[i] = 0x1010101ul * clear_val;
|
|
}
|
|
break;
|
|
|
|
case SWS_OP_CONVERT: {
|
|
if (!op->convert.expand)
|
|
return AVERROR(ENOTSUP);
|
|
for (int i = 0; i < 4; i++) {
|
|
switch (ff_sws_pixel_type_size(op->type)) {
|
|
case 1: mask[i] = 0x01010101 * (mask[i] & 0xFF); break;
|
|
case 2: mask[i] = 0x00010001 * (mask[i] & 0xFFFF); break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SWS_OP_WRITE: {
|
|
if (op->rw.frac || (!op->rw.packed && op->rw.elems > 1))
|
|
return AVERROR(ENOTSUP);
|
|
|
|
/* Initialize to no-op */
|
|
memset(shuffle, clear_val, size);
|
|
|
|
const int write_size = ff_sws_pixel_type_size(op->type);
|
|
const int read_chunk = read.rw.elems * read_size;
|
|
const int write_chunk = op->rw.elems * write_size;
|
|
const int num_groups = size / FFMAX(read_chunk, write_chunk);
|
|
for (int n = 0; n < num_groups; n++) {
|
|
const int base_in = n * read_chunk;
|
|
const int base_out = n * write_chunk;
|
|
for (int i = 0; i < op->rw.elems; i++) {
|
|
const int offset = base_out + i * write_size;
|
|
for (int b = 0; b < write_size; b++) {
|
|
const uint8_t idx = mask[i] >> (b * 8);
|
|
if (idx != clear_val)
|
|
shuffle[offset + b] = base_in + idx;
|
|
}
|
|
}
|
|
}
|
|
|
|
*read_bytes = num_groups * read_chunk;
|
|
*write_bytes = num_groups * write_chunk;
|
|
return num_groups;
|
|
}
|
|
|
|
default:
|
|
return AVERROR(ENOTSUP);
|
|
}
|
|
}
|
|
|
|
return AVERROR(EINVAL);
|
|
}
|