Files
hello-algo/en/codes/c/chapter_computational_complexity/time_complexity.c
Yudong Jin 2778a6f9c7 Translate all code to English (#1836)
* Review the EN heading format.

* Fix pythontutor headings.

* Fix pythontutor headings.

* bug fixes

* Fix headings in **/summary.md

* Revisit the CN-to-EN translation for Python code using Claude-4.5

* Revisit the CN-to-EN translation for Java code using Claude-4.5

* Revisit the CN-to-EN translation for Cpp code using Claude-4.5.

* Fix the dictionary.

* Fix cpp code translation for the multipart strings.

* Translate Go code to English.

* Update workflows to test EN code.

* Add EN translation for C.

* Add EN translation for CSharp.

* Add EN translation for Swift.

* Trigger the CI check.

* Revert.

* Update en/hash_map.md

* Add the EN version of Dart code.

* Add the EN version of Kotlin code.

* Add missing code files.

* Add the EN version of JavaScript code.

* Add the EN version of TypeScript code.

* Fix the workflows.

* Add the EN version of Ruby code.

* Add the EN version of Rust code.

* Update the CI check for the English version  code.

* Update Python CI check.

* Fix cmakelists for en/C code.

* Fix Ruby comments
2025-12-31 07:44:52 +08:00

180 lines
4.5 KiB
C

/**
* File: time_complexity.c
* Created Time: 2023-01-03
* Author: codingonion (coderonion@gmail.com)
*/
#include "../utils/common.h"
/* Constant order */
int constant(int n) {
int count = 0;
int size = 100000;
int i = 0;
for (int i = 0; i < size; i++) {
count++;
}
return count;
}
/* Linear order */
int linear(int n) {
int count = 0;
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
/* Linear order (traversing array) */
int arrayTraversal(int *nums, int n) {
int count = 0;
// Number of iterations is proportional to the array length
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
/* Exponential order */
int quadratic(int n) {
int count = 0;
// Number of iterations is quadratically related to the data size n
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
count++;
}
}
return count;
}
/* Quadratic order (bubble sort) */
int bubbleSort(int *nums, int n) {
int count = 0; // Counter
// Outer loop: unsorted range is [0, i]
for (int i = n - 1; i > 0; i--) {
// Inner loop: swap the largest element in the unsorted range [0, i] to the rightmost end of that range
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// Swap nums[j] and nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // Element swap includes 3 unit operations
}
}
}
return count;
}
/* Exponential order (loop implementation) */
int exponential(int n) {
int count = 0;
int bas = 1;
// Cells divide into two every round, forming sequence 1, 2, 4, 8, ..., 2^(n-1)
for (int i = 0; i < n; i++) {
for (int j = 0; j < bas; j++) {
count++;
}
bas *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
/* Exponential order (recursive implementation) */
int expRecur(int n) {
if (n == 1)
return 1;
return expRecur(n - 1) + expRecur(n - 1) + 1;
}
/* Logarithmic order (loop implementation) */
int logarithmic(int n) {
int count = 0;
while (n > 1) {
n = n / 2;
count++;
}
return count;
}
/* Logarithmic order (recursive implementation) */
int logRecur(int n) {
if (n <= 1)
return 0;
return logRecur(n / 2) + 1;
}
/* Linearithmic order */
int linearLogRecur(int n) {
if (n <= 1)
return 1;
int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
/* Factorial order (recursive implementation) */
int factorialRecur(int n) {
if (n == 0)
return 1;
int count = 0;
for (int i = 0; i < n; i++) {
count += factorialRecur(n - 1);
}
return count;
}
/* Driver Code */
int main(int argc, char *argv[]) {
// You can modify n to run and observe the trend of the number of operations for various complexities
int n = 8;
printf("Input data size n = %d\n", n);
int count = constant(n);
printf("Constant-time operations count = %d\n", count);
count = linear(n);
printf("Linear-time operations count = %d\n", count);
// Allocate heap memory (create 1D variable-length array: n elements of type int)
int *nums = (int *)malloc(n * sizeof(int));
count = arrayTraversal(nums, n);
printf("Linear-time (array traversal) operations count = %d\n", count);
count = quadratic(n);
printf("Quadratic-time operations count = %d\n", count);
for (int i = 0; i < n; i++) {
nums[i] = n - i; // [n,n-1,...,2,1]
}
count = bubbleSort(nums, n);
printf("Quadratic-time (bubble sort) operations count = %d\n", count);
count = exponential(n);
printf("Exponential-time (iterative) operations count = %d\n", count);
count = expRecur(n);
printf("Exponential-time (recursive) operations count = %d\n", count);
count = logarithmic(n);
printf("Logarithmic-time (iterative) operations count = %d\n", count);
count = logRecur(n);
printf("Logarithmic-time (recursive) operations count = %d\n", count);
count = linearLogRecur(n);
printf("Linearithmic-time (recursive) operations count = %d\n", count);
count = factorialRecur(n);
printf("Factorial-time (recursive) operations count = %d\n", count);
// Free heap memory
if (nums != NULL) {
free(nums);
nums = NULL;
}
getchar();
return 0;
}