Split out the actual functionality of adjtimex() and make do_adjtimex() a
wrapper which feeds the core timekeeper into it and handles the result
including audit at the call site.
This allows to reuse the actual functionality for auxiliary clocks.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20250625183758.187322876@linutronix.de
In __timekeeping_advance() the pointer to struct tk_data is hardcoded by the
use of &tk_core. As long as there is only a single timekeeper (tk_core),
this is not a problem. But when __timekeeping_advance() will be reused for
per auxiliary timekeepers, __timekeeping_advance() needs to be generalized.
Add a pointer to struct tk_data as function argument of
__timekeeping_advance() and adapt all call sites.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20250519083026.160967312@linutronix.de
To support auxiliary timekeeping and the related user space interfaces,
it's required to define a clock ID range for them.
Reserve 8 auxiliary clock IDs after the regular timekeeping clock ID space.
This is the maximum number of auxiliary clocks the kernel can support. The actual
number of supported clocks depends obviously on the presence of related devices
and might be constraint by the available VDSO space.
Add the corresponding timekeeper IDs as well.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20250519083025.905800695@linutronix.de
As long as there is only a single timekeeper, there is no need to clarify
which timekeeper is used. But with the upcoming reusage of the timekeeper
infrastructure for auxiliary clock timekeepers, an ID is required to
differentiate.
Introduce an enum for timekeeper IDs, introduce a field in struct tk_data
to store this timekeeper id and add also initialization. The id struct
field is added at the end of the second cachline, as there is a 4 byte hole
anyway.
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/all/20250519083025.842476378@linutronix.de
Pull timer core updates from Thomas Gleixner:
"Updates for the time/timer core code:
- Rework the initialization of the posix-timer kmem_cache and move
the cache pointer into the timer_data structure to prevent false
sharing
- Switch the alarmtimer code to lock guards
- Improve the CPU selection criteria in the per CPU validation of the
clocksource watchdog to avoid arbitrary selections (or omissions)
on systems with a small number of CPUs
- The usual cleanups and improvements"
* tag 'timers-core-2025-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tick/nohz: Remove unused tick_nohz_full_add_cpus_to()
clocksource: Fix the CPUs' choice in the watchdog per CPU verification
alarmtimer: Switch spin_{lock,unlock}_irqsave() to guards
alarmtimer: Remove dead return value in clock2alarm()
time/jiffies: Change register_refined_jiffies() to void __init
timers: Remove unused __round_jiffies(_up)
posix-timers: Initialize cache early and move pointer into __timer_data
Pull timer cleanups from Thomas Gleixner:
"Another set of timer API cleanups:
- Convert init_timer*(), try_to_del_timer_sync() and
destroy_timer_on_stack() over to the canonical timer_*()
namespace convention.
There is another large conversion pending, which has not been included
because it would have caused a gazillion of merge conflicts in next.
The conversion scripts will be run towards the end of the merge window
and a pull request sent once all conflict dependencies have been
merged"
* tag 'timers-cleanups-2025-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
treewide, timers: Rename destroy_timer_on_stack() as timer_destroy_on_stack()
treewide, timers: Rename try_to_del_timer_sync() as timer_delete_sync_try()
timers: Rename init_timers() as timers_init()
timers: Rename NEXT_TIMER_MAX_DELTA as TIMER_NEXT_MAX_DELTA
timers: Rename __init_timer_on_stack() as __timer_init_on_stack()
timers: Rename __init_timer() as __timer_init()
timers: Rename init_timer_on_stack_key() as timer_init_key_on_stack()
timers: Rename init_timer_key() as timer_init_key()
Right now, if the clocksource watchdog detects a clocksource skew, it might
perform a per CPU check, for example in the TSC case on x86. In other
words: supposing TSC is detected as unstable by the clocksource watchdog
running at CPU1, as part of marking TSC unstable the kernel will also run a
check of TSC readings on some CPUs to be sure it is synced between them
all.
But that check happens only on some CPUs, not all of them; this choice is
based on the parameter "verify_n_cpus" and in some random cpumask
calculation. So, the watchdog runs such per CPU checks on up to
"verify_n_cpus" random CPUs among all online CPUs, with the risk of
repeating CPUs (that aren't double checked) in the cpumask random
calculation.
But if "verify_n_cpus" > num_online_cpus(), it should skip the random
calculation and just go ahead and check the clocksource sync between
all online CPUs, without the risk of skipping some CPUs due to
duplicity in the random cpumask calculation.
Tests in a 4 CPU laptop with TSC skew detected led to some cases of the per
CPU verification skipping some CPU even with verify_n_cpus=8, due to the
duplicity on random cpumask generation. Skipping the randomization when the
number of online CPUs is smaller than verify_n_cpus, solves that.
Suggested-by: Thadeu Lima de Souza Cascardo <cascardo@igalia.com>
Signed-off-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/all/20250323173857.372390-1-gpiccoli@igalia.com
'clockid' can only be ALARM_REALTIME and ALARM_BOOTTIME. It's impossible to
return -1 and callers never check the return value.
Only alarm_clock_get_timespec(), alarm_clock_get_ktime(),
alarm_timer_create() and alarm_timer_nsleep() call clock2alarm(). These
callers use clockid_to_kclock() to get 'struct k_clock', which ensures
that clock2alarm() never returns -1.
Remove the impossible -1 return value, and add a warning to notify about any
future misuse of this function.
Signed-off-by: Su Hui <suhui@nfschina.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20250430032734.2079290-3-suhui@nfschina.com
Lei Chen raised an issue with CLOCK_MONOTONIC_COARSE seeing time
inconsistencies. Lei tracked down that this was being caused by the
adjustment:
tk->tkr_mono.xtime_nsec -= offset;
which is made to compensate for the unaccumulated cycles in offset when the
multiplicator is adjusted forward, so that the non-_COARSE clockids don't
see inconsistencies.
However, the _COARSE clockid getter functions use the adjusted xtime_nsec
value directly and do not compensate the negative offset via the
clocksource delta multiplied with the new multiplicator. In that case the
caller can observe time going backwards in consecutive calls.
By design, this negative adjustment should be fine, because the logic run
from timekeeping_adjust() is done after it accumulated approximately
multiplicator * interval_cycles
into xtime_nsec. The accumulated value is always larger then the
mult_adj * offset
value, which is subtracted from xtime_nsec. Both operations are done
together under the tk_core.lock, so the net change to xtime_nsec is always
always be positive.
However, do_adjtimex() calls into timekeeping_advance() as well, to
apply the NTP frequency adjustment immediately. In this case,
timekeeping_advance() does not return early when the offset is smaller
then interval_cycles. In that case there is no time accumulated into
xtime_nsec. But the subsequent call into timekeeping_adjust(), which
modifies the multiplicator, subtracts from xtime_nsec to correct for the
new multiplicator.
Here because there was no accumulation, xtime_nsec becomes smaller than
before, which opens a window up to the next accumulation, where the
_COARSE clockid getters, which don't compensate for the offset, can
observe the inconsistency.
This has been tried to be fixed by forwarding the timekeeper in the case
that adjtimex() adjusts the multiplier, which resets the offset to zero:
757b000f7b ("timekeeping: Fix possible inconsistencies in _COARSE clockids")
That works correctly, but unfortunately causes a regression on the
adjtimex() side. There are two issues:
1) The forwarding of the base time moves the update out of the original
period and establishes a new one.
2) The clearing of the accumulated NTP error is changing the behaviour as
well.
User-space expects that multiplier/frequency updates are in effect, when the
syscall returns, so delaying the update to the next tick is not solving the
problem either.
Commit 757b000f7b was reverted so that the established expectations of
user space implementations (ntpd, chronyd) are restored, but that obviously
brought the inconsistencies back.
One of the initial approaches to fix this was to establish a separate
storage for the coarse time getter nanoseconds part by calculating it from
the offset. That was dropped on the floor because not having yet another
state to maintain was simpler. But given the result of the above exercise,
this solution turns out to be the right one. Bring it back in a slightly
modified form.
Thus introduce timekeeper::coarse_nsec and store that nanoseconds part in
it, switch the time getter functions and the VDSO update to use that value.
coarse_nsec is set on operations which forward or initialize the timekeeper
and after time was accumulated during a tick. If there is no accumulation
the timestamp is unchanged.
This leaves the adjtimex() behaviour unmodified and prevents coarse time
from going backwards.
[ jstultz: Simplified the coarse_nsec calculation and kept behavior so
coarse clockids aren't adjusted on each inter-tick adjtimex
call, slightly reworked the comments and commit message ]
Fixes: da15cfdae0 ("time: Introduce CLOCK_REALTIME_COARSE")
Reported-by: Lei Chen <lei.chen@smartx.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/all/20250419054706.2319105-1-jstultz@google.com
Closes: https://lore.kernel.org/lkml/20250310030004.3705801-1-lei.chen@smartx.com/
Move posix_timers_cache initialization to posixtimer_init(). At that point
the memory subsystem is already up and running.
Also move the cache pointer to the __timer_data variable to avoid
potential false sharing, since it never was marked as __ro_after_init.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20250402133114.253901-1-edumazet@google.com
Pull timer cleanups from Thomas Gleixner:
"A set of final cleanups for the timer subsystem:
- Convert all del_timer[_sync]() instances over to the new
timer_delete[_sync]() API and remove the legacy wrappers.
Conversion was done with coccinelle plus some manual fixups as
coccinelle chokes on scoped_guard().
- The final cleanup of the hrtimer_init() to hrtimer_setup()
conversion.
This has been delayed to the end of the merge window, so that all
patches which have been merged through other trees are in mainline
and all new users are catched.
Doing this right before rc1 ensures that new code which is merged post
rc1 is not introducing new instances of the original functionality"
* tag 'timers-cleanups-2025-04-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tracing/timers: Rename the hrtimer_init event to hrtimer_setup
hrtimers: Rename debug_init_on_stack() to debug_setup_on_stack()
hrtimers: Rename debug_init() to debug_setup()
hrtimers: Rename __hrtimer_init_sleeper() to __hrtimer_setup_sleeper()
hrtimers: Remove unnecessary NULL check in hrtimer_start_range_ns()
hrtimers: Make callback function pointer private
hrtimers: Merge __hrtimer_init() into __hrtimer_setup()
hrtimers: Switch to use __htimer_setup()
hrtimers: Delete hrtimer_init()
treewide: Convert new and leftover hrtimer_init() users
treewide: Switch/rename to timer_delete[_sync]()