Files
linux/drivers/net/can/dev/calc_bittiming.c
Oliver Hartkopp b360a13d44 can: dev: print bitrate error with two decimal digits
Increase the resolution when printing the bitrate error and round-up the
value to 0.01% in the case the resolution would still provide values
which would lead to 0.00%.

Suggested-by: Vincent Mailhol <mailhol@kernel.org>
Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Link: https://patch.msgid.link/20251126-canxl-v8-17-e7e3eb74f889@pengutronix.de
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
2025-11-26 11:20:44 +01:00

263 lines
7.8 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
* Copyright (C) 2006 Andrey Volkov, Varma Electronics
* Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
* Copyright (C) 2021-2025 Vincent Mailhol <mailhol@kernel.org>
*/
#include <linux/units.h>
#include <linux/can/dev.h>
#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
/* CiA recommended sample points for Non Return to Zero encoding. */
static int can_calc_sample_point_nrz(const struct can_bittiming *bt)
{
if (bt->bitrate > 800 * KILO /* BPS */)
return 750;
if (bt->bitrate > 500 * KILO /* BPS */)
return 800;
return 875;
}
/* Sample points for Pulse-Width Modulation encoding. */
static int can_calc_sample_point_pwm(const struct can_bittiming *bt)
{
if (bt->bitrate > 15 * MEGA /* BPS */)
return 625;
if (bt->bitrate > 9 * MEGA /* BPS */)
return 600;
if (bt->bitrate > 4 * MEGA /* BPS */)
return 560;
return 520;
}
/* Bit-timing calculation derived from:
*
* Code based on LinCAN sources and H8S2638 project
* Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
* Copyright 2005 Stanislav Marek
* email: pisa@cmp.felk.cvut.cz
*
* Calculates proper bit-timing parameters for a specified bit-rate
* and sample-point, which can then be used to set the bit-timing
* registers of the CAN controller. You can find more information
* in the header file linux/can/netlink.h.
*/
static int
can_update_sample_point(const struct can_bittiming_const *btc,
const unsigned int sample_point_reference, const unsigned int tseg,
unsigned int *tseg1_ptr, unsigned int *tseg2_ptr,
unsigned int *sample_point_error_ptr)
{
unsigned int sample_point_error, best_sample_point_error = UINT_MAX;
unsigned int sample_point, best_sample_point = 0;
unsigned int tseg1, tseg2;
int i;
for (i = 0; i <= 1; i++) {
tseg2 = tseg + CAN_SYNC_SEG -
(sample_point_reference * (tseg + CAN_SYNC_SEG)) /
1000 - i;
tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max);
tseg1 = tseg - tseg2;
if (tseg1 > btc->tseg1_max) {
tseg1 = btc->tseg1_max;
tseg2 = tseg - tseg1;
}
sample_point = 1000 * (tseg + CAN_SYNC_SEG - tseg2) /
(tseg + CAN_SYNC_SEG);
sample_point_error = abs(sample_point_reference - sample_point);
if (sample_point <= sample_point_reference &&
sample_point_error < best_sample_point_error) {
best_sample_point = sample_point;
best_sample_point_error = sample_point_error;
*tseg1_ptr = tseg1;
*tseg2_ptr = tseg2;
}
}
if (sample_point_error_ptr)
*sample_point_error_ptr = best_sample_point_error;
return best_sample_point;
}
int can_calc_bittiming(const struct net_device *dev, struct can_bittiming *bt,
const struct can_bittiming_const *btc, struct netlink_ext_ack *extack)
{
struct can_priv *priv = netdev_priv(dev);
unsigned int bitrate; /* current bitrate */
unsigned int bitrate_error; /* diff between calculated and reference value */
unsigned int best_bitrate_error = UINT_MAX;
unsigned int sample_point_error; /* diff between calculated and reference value */
unsigned int best_sample_point_error = UINT_MAX;
unsigned int sample_point_reference; /* reference sample point */
unsigned int best_tseg = 0; /* current best value for tseg */
unsigned int best_brp = 0; /* current best value for brp */
unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0;
u64 v64;
int err;
if (bt->sample_point)
sample_point_reference = bt->sample_point;
else if (btc == priv->xl.data_bittiming_const &&
(priv->ctrlmode & CAN_CTRLMODE_XL_TMS))
sample_point_reference = can_calc_sample_point_pwm(bt);
else
sample_point_reference = can_calc_sample_point_nrz(bt);
/* tseg even = round down, odd = round up */
for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
tsegall = CAN_SYNC_SEG + tseg / 2;
/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
/* choose brp step which is possible in system */
brp = (brp / btc->brp_inc) * btc->brp_inc;
if (brp < btc->brp_min || brp > btc->brp_max)
continue;
bitrate = priv->clock.freq / (brp * tsegall);
bitrate_error = abs(bt->bitrate - bitrate);
/* tseg brp biterror */
if (bitrate_error > best_bitrate_error)
continue;
/* reset sample point error if we have a better bitrate */
if (bitrate_error < best_bitrate_error)
best_sample_point_error = UINT_MAX;
can_update_sample_point(btc, sample_point_reference, tseg / 2,
&tseg1, &tseg2, &sample_point_error);
if (sample_point_error >= best_sample_point_error)
continue;
best_sample_point_error = sample_point_error;
best_bitrate_error = bitrate_error;
best_tseg = tseg / 2;
best_brp = brp;
if (bitrate_error == 0 && sample_point_error == 0)
break;
}
if (best_bitrate_error) {
/* Error in one-hundredth of a percent */
v64 = (u64)best_bitrate_error * 10000;
do_div(v64, bt->bitrate);
bitrate_error = (u32)v64;
/* print at least 0.01% if the error is smaller */
bitrate_error = max(bitrate_error, 1U);
if (bitrate_error > CAN_CALC_MAX_ERROR) {
NL_SET_ERR_MSG_FMT(extack,
"bitrate error: %u.%02u%% too high",
bitrate_error / 100,
bitrate_error % 100);
return -EINVAL;
}
NL_SET_ERR_MSG_FMT(extack,
"bitrate error: %u.%02u%%",
bitrate_error / 100, bitrate_error % 100);
}
/* real sample point */
bt->sample_point = can_update_sample_point(btc, sample_point_reference,
best_tseg, &tseg1, &tseg2,
NULL);
v64 = (u64)best_brp * 1000 * 1000 * 1000;
do_div(v64, priv->clock.freq);
bt->tq = (u32)v64;
bt->prop_seg = tseg1 / 2;
bt->phase_seg1 = tseg1 - bt->prop_seg;
bt->phase_seg2 = tseg2;
can_sjw_set_default(bt);
err = can_sjw_check(dev, bt, btc, extack);
if (err)
return err;
bt->brp = best_brp;
/* real bitrate */
bt->bitrate = priv->clock.freq /
(bt->brp * can_bit_time(bt));
return 0;
}
void can_calc_tdco(struct can_tdc *tdc, const struct can_tdc_const *tdc_const,
const struct can_bittiming *dbt,
u32 tdc_mask, u32 *ctrlmode, u32 ctrlmode_supported)
{
u32 tdc_auto = tdc_mask & CAN_CTRLMODE_TDC_AUTO_MASK;
if (!tdc_const || !(ctrlmode_supported & tdc_auto))
return;
*ctrlmode &= ~tdc_mask;
/* As specified in ISO 11898-1 section 11.3.3 "Transmitter
* delay compensation" (TDC) is only applicable if data BRP is
* one or two.
*/
if (dbt->brp == 1 || dbt->brp == 2) {
/* Sample point in clock periods */
u32 sample_point_in_tc = (CAN_SYNC_SEG + dbt->prop_seg +
dbt->phase_seg1) * dbt->brp;
if (sample_point_in_tc < tdc_const->tdco_min)
return;
tdc->tdco = min(sample_point_in_tc, tdc_const->tdco_max);
*ctrlmode |= tdc_auto;
}
}
int can_calc_pwm(struct net_device *dev, struct netlink_ext_ack *extack)
{
struct can_priv *priv = netdev_priv(dev);
const struct can_pwm_const *pwm_const = priv->xl.pwm_const;
struct can_pwm *pwm = &priv->xl.pwm;
u32 xl_tqmin = can_bit_time_tqmin(&priv->xl.data_bittiming);
u32 xl_ns = can_tqmin_to_ns(xl_tqmin, priv->clock.freq);
u32 nom_tqmin = can_bit_time_tqmin(&priv->bittiming);
int pwm_per_bit_max = xl_tqmin / (pwm_const->pwms_min + pwm_const->pwml_min);
int pwm_per_bit;
u32 pwm_tqmin;
/* For 5 MB/s databitrate or greater, xl_ns < CAN_PWM_NS_MAX
* giving us a pwm_per_bit of 1 and the loop immediately breaks
*/
for (pwm_per_bit = DIV_ROUND_UP(xl_ns, CAN_PWM_NS_MAX);
pwm_per_bit <= pwm_per_bit_max; pwm_per_bit++)
if (xl_tqmin % pwm_per_bit == 0)
break;
if (pwm_per_bit > pwm_per_bit_max) {
NL_SET_ERR_MSG_FMT(extack,
"Can not divide the XL data phase's bit time: %u tqmin into multiple PWM symbols",
xl_tqmin);
return -EINVAL;
}
pwm_tqmin = xl_tqmin / pwm_per_bit;
pwm->pwms = DIV_ROUND_UP_POW2(pwm_tqmin, 4);
pwm->pwml = pwm_tqmin - pwm->pwms;
pwm->pwmo = nom_tqmin % pwm_tqmin;
return 0;
}