Files
ollama/x/imagegen/client/create.go
2026-01-09 21:09:46 -08:00

131 lines
4.0 KiB
Go

// Package client provides client-side model creation for tensor-based models.
//
// This package is in x/ because the tensor model storage format is under development.
// It also exists to break an import cycle: server imports x/imagegen, so x/imagegen
// cannot import server. This sub-package can import server because server doesn't
// import it.
//
// TODO (jmorganca): This is temporary. When tensor models are promoted to production:
// 1. Add proper API endpoints for tensor model creation
// 2. Move tensor extraction to server-side
// 3. Remove this package
// 4. Follow the same client→server pattern as regular model creation
package client
import (
"bytes"
"encoding/json"
"fmt"
"io"
"github.com/ollama/ollama/progress"
"github.com/ollama/ollama/server"
"github.com/ollama/ollama/types/model"
"github.com/ollama/ollama/x/imagegen"
)
// MinOllamaVersion is the minimum Ollama version required for image generation models.
const MinOllamaVersion = "0.14.0"
// CreateModel imports a tensor-based model from a local directory.
// This creates blobs and manifest directly on disk, bypassing the HTTP API.
//
// TODO (jmorganca): Replace with API-based creation when promoted to production.
func CreateModel(modelName, modelDir string, p *progress.Progress) error {
if !imagegen.IsTensorModelDir(modelDir) {
return fmt.Errorf("%s is not an image generation model directory (model_index.json not found)", modelDir)
}
status := "importing image generation model"
spinner := progress.NewSpinner(status)
p.Add("imagegen", spinner)
// Create layer callback for config files
createLayer := func(r io.Reader, mediaType, name string) (imagegen.LayerInfo, error) {
layer, err := server.NewLayer(r, mediaType)
if err != nil {
return imagegen.LayerInfo{}, err
}
layer.Name = name
return imagegen.LayerInfo{
Digest: layer.Digest,
Size: layer.Size,
MediaType: layer.MediaType,
Name: name,
}, nil
}
// Create tensor layer callback for individual tensors
// name is path-style: "component/tensor_name"
createTensorLayer := func(r io.Reader, name, dtype string, shape []int32) (imagegen.LayerInfo, error) {
layer, err := server.NewLayer(r, server.MediaTypeImageTensor)
if err != nil {
return imagegen.LayerInfo{}, err
}
layer.Name = name
return imagegen.LayerInfo{
Digest: layer.Digest,
Size: layer.Size,
MediaType: layer.MediaType,
Name: name,
}, nil
}
// Create manifest writer callback
writeManifest := func(modelName string, config imagegen.LayerInfo, layers []imagegen.LayerInfo) error {
name := model.ParseName(modelName)
if !name.IsValid() {
return fmt.Errorf("invalid model name: %s", modelName)
}
// Create a proper config blob with version requirement
configData := model.ConfigV2{
ModelFormat: "safetensors",
Capabilities: []string{"image"},
Requires: MinOllamaVersion,
}
configJSON, err := json.Marshal(configData)
if err != nil {
return fmt.Errorf("failed to marshal config: %w", err)
}
// Create config layer blob
configLayer, err := server.NewLayer(bytes.NewReader(configJSON), "application/vnd.docker.container.image.v1+json")
if err != nil {
return fmt.Errorf("failed to create config layer: %w", err)
}
// Convert LayerInfo to server.Layer (include the original model_index.json in layers)
serverLayers := make([]server.Layer, len(layers))
for i, l := range layers {
serverLayers[i] = server.Layer{
MediaType: l.MediaType,
Digest: l.Digest,
Size: l.Size,
Name: l.Name,
}
}
return server.WriteManifest(name, configLayer, serverLayers)
}
// Progress callback
progressFn := func(msg string) {
spinner.Stop()
status = msg
spinner = progress.NewSpinner(status)
p.Add("imagegen", spinner)
}
err := imagegen.CreateModel(modelName, modelDir, createLayer, createTensorLayer, writeManifest, progressFn)
spinner.Stop()
if err != nil {
return err
}
fmt.Printf("Created image generation model '%s'\n", modelName)
return nil
}