Files
ollama/x/imagegen/memory.go
2026-01-09 21:09:46 -08:00

103 lines
3.3 KiB
Go

// Package imagegen provides experimental image generation capabilities for Ollama.
//
// This package is in x/ because the tensor model storage format is under development.
// The goal is to integrate these capabilities into the main Ollama packages once
// the format is stable.
//
// TODO (jmorganca): Integrate into main packages when stable:
// - CLI commands → cmd/
// - API endpoints → api/
// - Model creation → server/
package imagegen
import (
"encoding/json"
"fmt"
"runtime"
)
// GB is a convenience constant for gigabytes.
const GB = 1024 * 1024 * 1024
// SupportedBackends lists the backends that support image generation.
var SupportedBackends = []string{"metal", "cuda", "cpu"}
// modelVRAMEstimates maps pipeline class names to their estimated VRAM requirements.
var modelVRAMEstimates = map[string]uint64{
"ZImagePipeline": 21 * GB, // ~21GB for Z-Image (text encoder + transformer + VAE)
"FluxPipeline": 21 * GB, // ~21GB for Flux (same architecture)
"QwenImagePipeline": 80 * GB, // TODO: verify actual requirements, using conservative estimate for now
}
// CheckPlatformSupport validates that image generation is supported on the current platform.
// Returns nil if supported, or an error describing why it's not supported.
func CheckPlatformSupport() error {
switch runtime.GOOS {
case "darwin":
// macOS: Metal is supported via MLX
if runtime.GOARCH != "arm64" {
return fmt.Errorf("image generation on macOS requires Apple Silicon (arm64), got %s", runtime.GOARCH)
}
return nil
case "linux", "windows":
// Linux/Windows: CUDA support (requires mlx or cuda build)
// The actual backend availability is checked at runtime
return nil
default:
return fmt.Errorf("image generation is not supported on %s", runtime.GOOS)
}
}
// CheckMemoryRequirements validates that there's enough memory for image generation.
// Returns nil if memory is sufficient, or an error if not.
func CheckMemoryRequirements(modelName string, availableMemory uint64) error {
required := EstimateVRAM(modelName)
if availableMemory < required {
return fmt.Errorf("insufficient memory for image generation: need %d GB, have %d GB",
required/GB, availableMemory/GB)
}
return nil
}
// ResolveModelName checks if a model name is a known image generation model.
// Returns the normalized model name if found, empty string otherwise.
func ResolveModelName(modelName string) string {
manifest, err := LoadManifest(modelName)
if err == nil && manifest.HasTensorLayers() {
return modelName
}
return ""
}
// EstimateVRAM returns the estimated VRAM needed for an image generation model.
// Returns a conservative default of 21GB if the model type cannot be determined.
func EstimateVRAM(modelName string) uint64 {
manifest, err := LoadManifest(modelName)
if err != nil {
return 21 * GB
}
data, err := manifest.ReadConfig("model_index.json")
if err != nil {
return 21 * GB
}
// Parse just the class name
var index struct {
ClassName string `json:"_class_name"`
}
if err := json.Unmarshal(data, &index); err != nil {
return 21 * GB
}
if estimate, ok := modelVRAMEstimates[index.ClassName]; ok {
return estimate
}
return 21 * GB
}
// HasTensorLayers checks if the given model has tensor layers.
func HasTensorLayers(modelName string) bool {
return ResolveModelName(modelName) != ""
}