Files
ollama/x/imagegen/nn/nn.go
Daniel Hiltgen 33ee7168ba Add experimental MLX backend and engine with imagegen support (#13648)
* WIP - MLX backend with gemma3

* MLX: add cmake and go tag build toggles

To build the new MLX backend code:
  cmake --preset MLX
  cmake --build --preset MLX --parallel
  cmake --install build --component MLX
  go build -tags mlx .

Note: the main.go entrypoint for the MLX engine will change in a follow up commit.

* add experimental image generation runtime

* add experimental image generation runtime

* MLX: wire up cuda build for linux

* MLX: get dependencies correct and dedup

This is still too large for a unified github artifact, but is now "correct" for the mlx_cuda_v13
directory.

* fix relative link bug in dedup

* Add darwin build and readme

* add go build tag for mlx dependent code and wire up build_darwin.sh

* lint cleanup

* macos: build mlx for x86

This will be CPU only.

* cuda build instructions and fix drift from mlx bump

* stale comment

* Delete agent helper doc

* Clean up readme.md

* Revise README for tokenizer clarity and details

Updated README to clarify tokenizer functionality and removed correctness section.

---------

Co-authored-by: jmorganca <jmorganca@gmail.com>
2026-01-08 16:18:59 -08:00

204 lines
6.2 KiB
Go

//go:build mlx
// Package nn provides neural network layer types.
package nn
import "github.com/ollama/ollama/x/imagegen/mlx"
// Layer is the interface for neural network layers with a Forward method.
type Layer interface {
Forward(x *mlx.Array) *mlx.Array
}
// Linear applies an affine transformation: y = x @ W.T + b
// Weight is stored as [out_features, in_features], matching PyTorch/MLX convention.
type Linear struct {
Weight *mlx.Array `weight:"weight"` // [out_features, in_features]
Bias *mlx.Array `weight:"bias,optional"` // [out_features] or nil
}
// NewLinear creates a linear layer.
// Weight should be [out_features, in_features].
func NewLinear(weight *mlx.Array, bias *mlx.Array) *Linear {
return &Linear{Weight: weight, Bias: bias}
}
// NewQuantizedLinear creates a quantized linear layer directly from bf16 weights.
// Quantizes the weight immediately and evaluates to break lazy dependencies.
func NewQuantizedLinear(weight *mlx.Array, bias *mlx.Array, groupSize, bits int, mode string) *QuantizedLinear {
qw, scales, qbiases := mlx.Quantize(weight, groupSize, bits, mode)
// Eval immediately so bf16 weight can be freed
mlx.Eval(qw, scales, qbiases)
return &QuantizedLinear{
Weight: qw,
Scales: scales,
QBiases: qbiases,
Bias: bias,
GroupSize: groupSize,
Bits: bits,
Mode: mode,
}
}
// Forward applies the linear transformation: x @ W.T + bias
func (l *Linear) Forward(x *mlx.Array) *mlx.Array {
w := mlx.Transpose(l.Weight, 1, 0)
if l.Bias != nil {
return mlx.AddMM(l.Bias, x, w, 1.0, 1.0)
}
return mlx.Linear(x, w)
}
// ToQuantized converts this Linear to a QuantizedLinear.
func (l *Linear) ToQuantized(groupSize, bits int, mode string) *QuantizedLinear {
qw, scales, qbiases := mlx.Quantize(l.Weight, groupSize, bits, mode)
return &QuantizedLinear{
Weight: qw,
Scales: scales,
QBiases: qbiases,
Bias: l.Bias,
GroupSize: groupSize,
Bits: bits,
Mode: mode,
}
}
// QuantizedLinear applies an affine transformation using quantized weights.
// Equivalent to mlx.nn.QuantizedLinear.
type QuantizedLinear struct {
Weight *mlx.Array // Quantized weight data
Scales *mlx.Array // Scale factors for dequantization
QBiases *mlx.Array // Quantization biases (NOT layer bias)
Bias *mlx.Array // Layer bias [output_dims] or nil
GroupSize int
Bits int
Mode string
}
// Forward applies the quantized linear transformation.
func (ql *QuantizedLinear) Forward(x *mlx.Array) *mlx.Array {
out := mlx.QuantizedMatmul(x, ql.Weight, ql.Scales, ql.QBiases, true, ql.GroupSize, ql.Bits, ql.Mode)
if ql.Bias != nil {
out = mlx.Add(out, ql.Bias)
}
return out
}
// RMSNorm represents an RMS normalization layer.
type RMSNorm struct {
Weight *mlx.Array `weight:"weight"`
Eps float32 // optional: used if Forward called with eps=0
}
// NewRMSNorm creates an RMSNorm layer (for models not using weight loader).
func NewRMSNorm(weight *mlx.Array, eps float32) *RMSNorm {
return &RMSNorm{Weight: weight, Eps: eps}
}
// Forward applies RMS normalization. If eps=0, uses stored Eps.
func (rn *RMSNorm) Forward(x *mlx.Array, eps float32) *mlx.Array {
if eps == 0 {
eps = rn.Eps
}
return mlx.RMSNorm(x, rn.Weight, eps)
}
// Embedding represents an embedding layer.
type Embedding struct {
Weight *mlx.Array `weight:"weight"`
}
// NewEmbedding creates an embedding layer.
func NewEmbedding(weight *mlx.Array) *Embedding {
return &Embedding{Weight: weight}
}
// Forward looks up embeddings by indices.
func (e *Embedding) Forward(indices *mlx.Array) *mlx.Array {
return mlx.Take(e.Weight, indices, 0)
}
// RepeatKV repeats K/V tensors for grouped query attention
// x: [B, num_kv_heads, S, head_dim] -> [B, num_heads, S, head_dim]
func RepeatKV(x *mlx.Array, repeatFactor int32) *mlx.Array {
if repeatFactor == 1 {
return x
}
shape := x.Shape()
// [B, num_kv_heads, S, head_dim] -> [B, num_kv_heads, 1, S, head_dim]
x = mlx.ExpandDims(x, 2)
// Repeat along the new axis
reps := []int32{1, 1, repeatFactor, 1, 1}
x = mlx.Tile(x, reps)
// Reshape: [B, num_kv_heads, repeat, S, head_dim] -> [B, num_kv_heads * repeat, S, head_dim]
return mlx.Reshape(x, shape[0], shape[1]*repeatFactor, shape[2], shape[3])
}
// ApplyCausalMask applies causal (lower triangular) mask to attention scores
func ApplyCausalMask(scores *mlx.Array) *mlx.Array {
// scores: [B, num_heads, S, S]
shape := scores.Shape()
seqLen := shape[2]
// Create causal mask: 1 for positions to keep, 0 for positions to mask
mask := mlx.Tri(seqLen, seqLen, 0)
// Where mask is 0, set score to -inf
negInf := mlx.NewScalarArray(float32(-1e9))
// Broadcast mask to match scores shape
mask = mlx.ExpandDims(mlx.ExpandDims(mask, 0), 0) // [1, 1, S, S]
// Use where: if mask > 0, keep scores, else -inf
return mlx.Where(mask, scores, negInf)
}
// ApplyCausalMaskWithOffset applies causal mask for cached attention
// scores: [B, num_heads, queryLen, keyLen] where keyLen = cacheLen + queryLen
// offset: the starting position of the new queries (i.e., cache length)
func ApplyCausalMaskWithOffset(scores *mlx.Array, offset int32) *mlx.Array {
if offset == 0 {
return ApplyCausalMask(scores)
}
shape := scores.Shape()
queryLen := shape[2]
keyLen := shape[3]
// For cached attention, new queries can attend to all cached keys plus
// new keys up to and including their position.
mask := mlx.Tri(queryLen, keyLen, int(offset))
negInf := mlx.NewScalarArray(float32(-1e9))
mask = mlx.ExpandDims(mlx.ExpandDims(mask, 0), 0) // [1, 1, queryLen, keyLen]
return mlx.Where(mask, scores, negInf)
}
// LayerNorm represents a standard layer normalization layer (with bias).
type LayerNorm struct {
Weight *mlx.Array `weight:"weight"`
Bias *mlx.Array `weight:"bias"`
Eps float32
}
// Forward applies layer normalization: (x - mean) / sqrt(var + eps) * weight + bias
func (ln *LayerNorm) Forward(x *mlx.Array) *mlx.Array {
eps := ln.Eps
if eps == 0 {
eps = 1e-5
}
// Compute mean and variance along last dimension
mean := mlx.Mean(x, -1, true)
centered := mlx.Sub(x, mean)
variance := mlx.Mean(mlx.Mul(centered, centered), -1, true)
normalized := mlx.Mul(centered, mlx.RSqrt(mlx.AddScalar(variance, eps)))
// Scale and shift
out := mlx.Mul(normalized, ln.Weight)
if ln.Bias != nil {
out = mlx.Add(out, ln.Bias)
}
return out
}