Files
ollama/x/ml/backend/mlx/mlx_test.go
Daniel Hiltgen 33ee7168ba Add experimental MLX backend and engine with imagegen support (#13648)
* WIP - MLX backend with gemma3

* MLX: add cmake and go tag build toggles

To build the new MLX backend code:
  cmake --preset MLX
  cmake --build --preset MLX --parallel
  cmake --install build --component MLX
  go build -tags mlx .

Note: the main.go entrypoint for the MLX engine will change in a follow up commit.

* add experimental image generation runtime

* add experimental image generation runtime

* MLX: wire up cuda build for linux

* MLX: get dependencies correct and dedup

This is still too large for a unified github artifact, but is now "correct" for the mlx_cuda_v13
directory.

* fix relative link bug in dedup

* Add darwin build and readme

* add go build tag for mlx dependent code and wire up build_darwin.sh

* lint cleanup

* macos: build mlx for x86

This will be CPU only.

* cuda build instructions and fix drift from mlx bump

* stale comment

* Delete agent helper doc

* Clean up readme.md

* Revise README for tokenizer clarity and details

Updated README to clarify tokenizer functionality and removed correctness section.

---------

Co-authored-by: jmorganca <jmorganca@gmail.com>
2026-01-08 16:18:59 -08:00

315 lines
7.9 KiB
Go

//go:build mlx
package mlx
import (
"log/slog"
"os"
"reflect"
"strings"
"testing"
"github.com/ollama/ollama/api"
"github.com/ollama/ollama/runner/common"
"github.com/ollama/ollama/sample"
"github.com/ollama/ollama/x/ml"
"github.com/ollama/ollama/x/model"
"github.com/ollama/ollama/x/model/input"
_ "github.com/ollama/ollama/x/model/models/gemma3"
)
func init() {
logger := slog.New(slog.NewTextHandler(os.Stdout, &slog.HandlerOptions{Level: slog.LevelDebug}))
slog.SetDefault(logger)
}
func TestLoadModel(t *testing.T) {
dir := "/Users/daniel/Models/gemma-3-4b-it/"
b := &Backend{}
err := b.LoadSafeTensors(dir)
if err != nil {
t.Fatalf("load failed: %s", err)
}
}
func TestFromInts(t *testing.T) {
b := &Backend{}
c := b.NewContext()
defer c.Close()
data := []int32{1, 2, 3, 4, 5, 6}
a := c.FromInts(data, 2, 3)
slog.Info("", "array", a)
t.Log(a.ToString())
if !reflect.DeepEqual(a.Shape(), []int{2, 3}) {
t.Fatalf("incorrect shape: %v", a.Shape())
}
}
func TestFromFloats(t *testing.T) {
b := &Backend{}
c := b.NewContext()
defer c.Close()
data := []float32{1, 2, 3, 4, 5, 6}
a := c.FromFloats(data, 2, 3)
slog.Info("", "array", a)
t.Log(a.ToString())
if !reflect.DeepEqual(a.Shape(), []int{2, 3}) {
t.Fatalf("incorrect shape: %v", a.Shape())
}
res := a.Floats()
if !reflect.DeepEqual(res, data) {
t.Fatalf("incorrect results: %v", res)
}
}
func TestAdd(t *testing.T) {
b := &Backend{}
c := b.NewContext()
defer c.Close()
t1 := c.Arange(0, 24, 1, ml.DTypeFloat16)
t2 := c.Arange(0, 24, 1, ml.DTypeFloat16)
exp := c.Arange(0, 48, 2, ml.DTypeFloat16)
t3 := t1.Add(c, t2)
c.Compute(t3, exp)
t3f := t3.Floats()
if !reflect.DeepEqual(t3f, exp.Floats()) {
t.Fatalf("incorrect result: %v", t3f)
}
}
func TestReshapeTranspose(t *testing.T) {
b := &Backend{}
c := b.NewContext()
defer c.Close()
t1 := c.Arange(0, 24, 1, ml.DTypeFloat16).Reshape(c, 2, 3, 4).Transpose(c, 0, 2, 1).Contiguous(c, false)
c.Compute(t1)
t1f := t1.Floats()
exp := []float32{
0, 4, 8,
1, 5, 9,
2, 6, 10,
3, 7, 11,
12, 16, 20,
13, 17, 21,
14, 18, 22,
15, 19, 23,
}
if !reflect.DeepEqual(t1f, exp) {
t.Fatalf("incorrect results: %v", t1f)
}
}
func prod(vals ...int) int {
r := 1
for _, v := range vals {
r *= v
}
return r
}
func TestMatmul(t *testing.T) {
// TODO create scenarios...
b := &Backend{}
c := b.NewContext()
defer c.Close()
s1 := []int{1, 3, 2, 4}
t1 := c.Arange(0, float32(prod(s1...)), 1, ml.DTypeFloat16).Reshape(c, s1...)
s2 := []int{4, 2}
t2 := c.Arange(0, float32(prod(s2...)), 1, ml.DTypeFloat16).Reshape(c, s2...)
t3 := t1.Matmul(c, t2)
exp := []float32{
28, 34,
76, 98,
124, 162,
172, 226,
220, 290,
268, 354,
}
c.Compute(t3)
t3f := t3.Floats()
if !reflect.DeepEqual(t3f, exp) {
t.Fatalf("incorrect result: %v", t3f)
}
}
func TestRows(t *testing.T) {
b := &Backend{}
c := b.NewContext()
defer c.Close()
t1 := c.Arange(0, 12, 1, ml.DTypeFloat32).Reshape(c, 1, 4, 3)
outputs := c.Zeros(ml.DTypeInt32, 1)
t2 := t1.TakeAxes(c, outputs, 1)
c.Forward(t1, t2).Compute(t1, t2)
t.Log(t1.ToString())
t.Log(t2.ToString())
f := t2.Floats()
t.Logf("Result: %v", f)
}
func TestCaching(t *testing.T) {
// Validate the caching algorithm
b := &Backend{}
c := b.NewContext()
defer c.Close()
batchSize := 3
headDim := 4
numKVHeads := 2
// Make cache twice the size of one test batch
cells := batchSize * 2
cellSize := numKVHeads * headDim
shape := []int{1, numKVHeads, batchSize, headDim}
stop := float32(1)
for _, x := range shape {
stop *= float32(x)
}
// Create the cache
cache := c.Zeros(ml.DTypeFloat16, cells, cellSize)
t.Logf("Empty Cache shape%v\n"+cache.ToString(), []int{cells, cellSize})
// Input tensor
t1 := c.Arange(0, stop, 1, ml.DTypeFloat16).Reshape(c, shape...)
t.Logf("Initial Data shape%v\n"+t1.ToString(), shape)
// Reshape to copy into the cache
/*
From MLX python/src/indexing.cpp mlx_scatter_args_array
// The update shape must broadcast with indices.shape + [1] + src.shape[1:]
auto up_shape = indices.shape();
up_shape.insert(up_shape.end(), src.shape().begin() + 1, src.shape().end());
up = broadcast_to(up, up_shape);
up_shape.insert(up_shape.begin() + indices.ndim(), 1);
up = reshape(up, up_shape);
*/
numRows := 3
up := t1.Reshape(c, numRows, 1, cellSize) // The shape has to look like this for scatter to work properly
t.Logf("Data reshaped for cache input shape%v\n"+up.ToString(), []int{batchSize, numKVHeads * headDim})
// Simulate cells 1,3,5 are available
indicies := []ml.Tensor{c.FromInts([]int32{1, 3, 5}, numRows)}
t.Logf("Indicies shape%v\n"+indicies[0].ToString(), []int{numRows})
axis := []int{0} // The 1,3,5 of the indicies are in reference to axis 0 in the cache shape
cache.Scatter(c, indicies, up, axis)
c.Forward(cache)
// Cache should contain the data now
t.Log("Cache after put\n" + cache.ToString())
// Retrieve cache content and verify it matches
out := cache.TakeAxes(c, indicies[0], 0).Reshape(c, shape...)
t.Logf("Output shape%v\n"+out.ToString(), out.Shape())
t1f := t1.Floats()
outf := out.Floats()
if !reflect.DeepEqual(t1f, outf) {
t.Fatalf("mismatched in->out\n%v\n ->\n%v", t1f, outf)
}
}
func TestGemma3(t *testing.T) {
// Why is the sky blue
inputs := []int32{2, 105, 2364, 107, 36425, 563, 506, 7217, 3730, 106, 107, 105, 4368}
limit := 50
// TODO generalize this
dir := "/Users/daniel/Models/gemma-3-4b-it/"
m, err := model.New(dir, ml.BackendParams{})
if err != nil {
t.Fatalf("unable to load model: %s", err)
}
b := m.Backend()
ctx := b.NewContext()
defer ctx.Close()
batch := input.Batch{
Inputs: ctx.FromInts(inputs[:], 1, len(inputs)),
Positions: make([]int32, len(inputs)),
Sequences: make([]int, len(inputs)),
Outputs: ctx.FromInts([]int32{int32(len(inputs) - 1)}, 1),
Offset: 0,
}
for i := range len(inputs) {
batch.Positions[i] = int32(i)
}
offset := len(inputs)
cache := m.Config().Cache
if cache != nil {
numSlots := 1
batchSize := 512
numCtx := 4096
// Note: this is inconsistent with mlx-py, but trying to be consistent with the GGML cache impl to get things working
// cache.SetConfig(ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeBfloat16, MaskBatchPadding: 64})
cache.SetConfig(ml.CacheConfig{CachePadding: 0, MaskDType: ml.DTypeBfloat16, MaskBatchPadding: 0})
cache.Init(b, ml.DTypeBfloat16, numSlots, int(numCtx), batchSize)
err := cache.StartForward(ctx, batch, false)
if err != nil {
t.Fatalf("failed cache.StartForward: %s", err)
}
}
opts := api.DefaultOptions()
var grammar *sample.GrammarSampler
sampler := sample.NewSampler(
opts.Temperature,
opts.TopK,
opts.TopP,
opts.MinP,
opts.Seed,
grammar,
)
t.Log("Starting Forward pass loop")
pendingResponses := []string{}
for {
out, err := m.Forward(ctx, batch)
if err != nil {
t.Fatalf("failed forward pass: %s", err)
}
ctx.Forward(out)
outputs := out.Floats()
t.Logf("finished forward pass! length:%d", len(outputs))
// sample a token
logits := outputs
token, err := sampler.Sample(logits)
if err != nil {
t.Fatalf("unable to sample token: %s", err)
}
t.Logf("Sampled token: %v", token)
if m.(model.TextProcessor).Is(token, model.SpecialEOS) {
t.Log("hit EOS")
break
}
piece, err := m.(model.TextProcessor).Decode([]int32{token})
if err != nil {
t.Fatalf("unable to decode token: %s", err)
}
pendingResponses = append(pendingResponses, piece)
sequence := strings.Join(pendingResponses, "")
if ok, stop := common.FindStop(sequence, opts.Stop); ok {
t.Logf("hit stop token: %v", stop)
break
}
t.Logf("RESULTS: %s", sequence)
batch = input.Batch{
Inputs: ctx.FromInts([]int32{token}, 1, 1),
Positions: make([]int32, 1),
Sequences: make([]int, 1),
Outputs: ctx.FromInts([]int32{0}, 1),
Offset: offset,
}
offset++
batch.Positions[0] = 0
err = cache.StartForward(ctx, batch, false)
if err != nil {
t.Fatalf("failed cache.StartForward: %s", err)
}
if offset > limit {
break
}
}
}