Files
opencv/modules/gapi/misc/python/test/test_gapi_sample_pipelines.py
Anatoliy Talamanov c4df8989e9 Merge pull request #19982 from TolyaTalamanov:at/new-python-operation-api
G-API: New python operations API

* Reimplement test using decorators

* Custom python operation API

* Remove wip status

* python: support Python code in bindings (through loader only)

* cleanup, skip tests for Python 2.x (not supported)

* python 2.x can't skip unittest modules

* Clean up

* Clean up

* Fix segfault python3.9

Co-authored-by: Alexander Alekhin <alexander.a.alekhin@gmail.com>
2021-05-20 18:59:53 +00:00

682 lines
23 KiB
Python

#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
import sys
import unittest
from tests_common import NewOpenCVTests
try:
if sys.version_info[:2] < (3, 0):
raise unittest.SkipTest('Python 2.x is not supported')
# Plaidml is an optional backend
pkgs = [
('ocl' , cv.gapi.core.ocl.kernels()),
('cpu' , cv.gapi.core.cpu.kernels()),
('fluid' , cv.gapi.core.fluid.kernels())
# ('plaidml', cv.gapi.core.plaidml.kernels())
]
@cv.gapi.op('custom.add', in_types=[cv.GMat, cv.GMat, int], out_types=[cv.GMat])
class GAdd:
"""Calculates sum of two matrices."""
@staticmethod
def outMeta(desc1, desc2, depth):
return desc1
@cv.gapi.kernel(GAdd)
class GAddImpl:
"""Implementation for GAdd operation."""
@staticmethod
def run(img1, img2, dtype):
return cv.add(img1, img2)
@cv.gapi.op('custom.split3', in_types=[cv.GMat], out_types=[cv.GMat, cv.GMat, cv.GMat])
class GSplit3:
"""Divides a 3-channel matrix into 3 single-channel matrices."""
@staticmethod
def outMeta(desc):
out_desc = desc.withType(desc.depth, 1)
return out_desc, out_desc, out_desc
@cv.gapi.kernel(GSplit3)
class GSplit3Impl:
"""Implementation for GSplit3 operation."""
@staticmethod
def run(img):
# NB: cv.split return list but g-api requires tuple in multiple output case
return tuple(cv.split(img))
@cv.gapi.op('custom.mean', in_types=[cv.GMat], out_types=[cv.GScalar])
class GMean:
"""Calculates the mean value M of matrix elements."""
@staticmethod
def outMeta(desc):
return cv.empty_scalar_desc()
@cv.gapi.kernel(GMean)
class GMeanImpl:
"""Implementation for GMean operation."""
@staticmethod
def run(img):
# NB: cv.split return list but g-api requires tuple in multiple output case
return cv.mean(img)
@cv.gapi.op('custom.addC', in_types=[cv.GMat, cv.GScalar, int], out_types=[cv.GMat])
class GAddC:
"""Adds a given scalar value to each element of given matrix."""
@staticmethod
def outMeta(mat_desc, scalar_desc, dtype):
return mat_desc
@cv.gapi.kernel(GAddC)
class GAddCImpl:
"""Implementation for GAddC operation."""
@staticmethod
def run(img, sc, dtype):
# NB: dtype is just ignored in this implementation.
# Moreover from G-API kernel got scalar as tuples with 4 elements
# where the last element is equal to zero, just cut him for broadcasting.
return img + np.array(sc, dtype=np.uint8)[:-1]
@cv.gapi.op('custom.size', in_types=[cv.GMat], out_types=[cv.GOpaque.Size])
class GSize:
"""Gets dimensions from input matrix."""
@staticmethod
def outMeta(mat_desc):
return cv.empty_gopaque_desc()
@cv.gapi.kernel(GSize)
class GSizeImpl:
"""Implementation for GSize operation."""
@staticmethod
def run(img):
# NB: Take only H, W, because the operation should return cv::Size which is 2D.
return img.shape[:2]
@cv.gapi.op('custom.sizeR', in_types=[cv.GOpaque.Rect], out_types=[cv.GOpaque.Size])
class GSizeR:
"""Gets dimensions from rectangle."""
@staticmethod
def outMeta(opaq_desc):
return cv.empty_gopaque_desc()
@cv.gapi.kernel(GSizeR)
class GSizeRImpl:
"""Implementation for GSizeR operation."""
@staticmethod
def run(rect):
# NB: rect - is tuple (x, y, h, w)
return (rect[2], rect[3])
@cv.gapi.op('custom.boundingRect', in_types=[cv.GArray.Point], out_types=[cv.GOpaque.Rect])
class GBoundingRect:
"""Calculates minimal up-right bounding rectangle for the specified
9 point set or non-zero pixels of gray-scale image."""
@staticmethod
def outMeta(arr_desc):
return cv.empty_gopaque_desc()
@cv.gapi.kernel(GBoundingRect)
class GBoundingRectImpl:
"""Implementation for GBoundingRect operation."""
@staticmethod
def run(array):
# NB: OpenCV - numpy array (n_points x 2).
# G-API - array of tuples (n_points).
return cv.boundingRect(np.array(array))
@cv.gapi.op('custom.goodFeaturesToTrack',
in_types=[cv.GMat, int, float, float, int, bool, float],
out_types=[cv.GArray.Point2f])
class GGoodFeatures:
"""Finds the most prominent corners in the image
or in the specified image region."""
@staticmethod
def outMeta(desc, max_corners, quality_lvl,
min_distance, block_sz,
use_harris_detector, k):
return cv.empty_array_desc()
@cv.gapi.kernel(GGoodFeatures)
class GGoodFeaturesImpl:
"""Implementation for GGoodFeatures operation."""
@staticmethod
def run(img, max_corners, quality_lvl,
min_distance, block_sz,
use_harris_detector, k):
features = cv.goodFeaturesToTrack(img, max_corners, quality_lvl,
min_distance, mask=None,
blockSize=block_sz,
useHarrisDetector=use_harris_detector, k=k)
# NB: The operation output is cv::GArray<cv::Pointf>, so it should be mapped
# to python paramaters like this: [(1.2, 3.4), (5.2, 3.2)], because the cv::Point2f
# according to opencv rules mapped to the tuple and cv::GArray<> mapped to the list.
# OpenCV returns np.array with shape (n_features, 1, 2), so let's to convert it to list
# tuples with size == n_features.
features = list(map(tuple, features.reshape(features.shape[0], -1)))
return features
# To validate invalid cases
def create_op(in_types, out_types):
@cv.gapi.op('custom.op', in_types=in_types, out_types=out_types)
class Op:
"""Custom operation for testing."""
@staticmethod
def outMeta(desc):
raise NotImplementedError("outMeta isn't imlemented")
return Op
class gapi_sample_pipelines(NewOpenCVTests):
def test_custom_op_add(self):
sz = (3, 3)
in_mat1 = np.full(sz, 45, dtype=np.uint8)
in_mat2 = np.full(sz, 50, dtype=np.uint8)
# OpenCV
expected = cv.add(in_mat1, in_mat2)
# G-API
g_in1 = cv.GMat()
g_in2 = cv.GMat()
g_out = GAdd.on(g_in1, g_in2, cv.CV_8UC1)
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
pkg = cv.gapi.kernels(GAddImpl)
actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_split3(self):
sz = (4, 4)
in_ch1 = np.full(sz, 1, dtype=np.uint8)
in_ch2 = np.full(sz, 2, dtype=np.uint8)
in_ch3 = np.full(sz, 3, dtype=np.uint8)
# H x W x C
in_mat = np.stack((in_ch1, in_ch2, in_ch3), axis=2)
# G-API
g_in = cv.GMat()
g_ch1, g_ch2, g_ch3 = GSplit3.on(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_ch1, g_ch2, g_ch3))
pkg = cv.gapi.kernels(GSplit3Impl)
ch1, ch2, ch3 = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(in_ch1, ch1, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(in_ch2, ch2, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(in_ch3, ch3, cv.NORM_INF))
def test_custom_op_mean(self):
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.imread(img_path)
# OpenCV
expected = cv.mean(in_mat)
# G-API
g_in = cv.GMat()
g_out = GMean.on(g_in)
comp = cv.GComputation(g_in, g_out)
pkg = cv.gapi.kernels(GMeanImpl)
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# Comparison
self.assertEqual(expected, actual)
def test_custom_op_addC(self):
sz = (3, 3, 3)
in_mat = np.full(sz, 45, dtype=np.uint8)
sc = (50, 10, 20)
# Numpy reference, make array from sc to keep uint8 dtype.
expected = in_mat + np.array(sc, dtype=np.uint8)
# G-API
g_in = cv.GMat()
g_sc = cv.GScalar()
g_out = GAddC.on(g_in, g_sc, cv.CV_8UC1)
comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(g_out))
pkg = cv.gapi.kernels(GAddCImpl)
actual = comp.apply(cv.gin(in_mat, sc), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_size(self):
sz = (100, 150, 3)
in_mat = np.full(sz, 45, dtype=np.uint8)
# Open_cV
expected = (100, 150)
# G-API
g_in = cv.GMat()
g_sz = GSize.on(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_sz))
pkg = cv.gapi.kernels(GSizeImpl)
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_sizeR(self):
# x, y, h, w
roi = (10, 15, 100, 150)
expected = (100, 150)
# G-API
g_r = cv.GOpaque.Rect()
g_sz = GSizeR.on(g_r)
comp = cv.GComputation(cv.GIn(g_r), cv.GOut(g_sz))
pkg = cv.gapi.kernels(GSizeRImpl)
actual = comp.apply(cv.gin(roi), args=cv.compile_args(pkg))
# cv.norm works with tuples ?
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_boundingRect(self):
points = [(0,0), (0,1), (1,0), (1,1)]
# OpenCV
expected = cv.boundingRect(np.array(points))
# G-API
g_pts = cv.GArray.Point()
g_br = GBoundingRect.on(g_pts)
comp = cv.GComputation(cv.GIn(g_pts), cv.GOut(g_br))
pkg = cv.gapi.kernels(GBoundingRectImpl)
actual = comp.apply(cv.gin(points), args=cv.compile_args(pkg))
# cv.norm works with tuples ?
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_goodFeaturesToTrack(self):
# G-API
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
# NB: goodFeaturesToTrack configuration
max_corners = 50
quality_lvl = 0.01
min_distance = 10.0
block_sz = 3
use_harris_detector = True
k = 0.04
# OpenCV
expected = cv.goodFeaturesToTrack(in_mat, max_corners, quality_lvl,
min_distance, mask=None,
blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
# G-API
g_in = cv.GMat()
g_out = GGoodFeatures.on(g_in, max_corners, quality_lvl,
min_distance, block_sz, use_harris_detector, k)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
pkg = cv.gapi.kernels(GGoodFeaturesImpl)
actual = comp.apply(cv.gin(in_mat), args=cv.compile_args(pkg))
# NB: OpenCV & G-API have different output types.
# OpenCV - numpy array with shape (num_points, 1, 2)
# G-API - list of tuples with size - num_points
# Comparison
self.assertEqual(0.0, cv.norm(expected.flatten(),
np.array(actual, dtype=np.float32).flatten(), cv.NORM_INF))
def test_invalid_op(self):
# NB: Empty input types list
with self.assertRaises(Exception): create_op(in_types=[], out_types=[cv.GMat])
# NB: Empty output types list
with self.assertRaises(Exception): create_op(in_types=[cv.GMat], out_types=[])
# Invalid output types
with self.assertRaises(Exception): create_op(in_types=[cv.GMat], out_types=[int])
with self.assertRaises(Exception): create_op(in_types=[cv.GMat], out_types=[cv.GMat, int])
with self.assertRaises(Exception): create_op(in_types=[cv.GMat], out_types=[str, cv.GScalar])
def test_invalid_op_input(self):
# NB: Check GMat/GScalar
with self.assertRaises(Exception): create_op([cv.GMat] , [cv.GScalar]).on(cv.GScalar())
with self.assertRaises(Exception): create_op([cv.GScalar], [cv.GScalar]).on(cv.GMat())
# NB: Check GOpaque
op = create_op([cv.GOpaque.Rect], [cv.GMat])
with self.assertRaises(Exception): op.on(cv.GOpaque.Bool())
with self.assertRaises(Exception): op.on(cv.GOpaque.Int())
with self.assertRaises(Exception): op.on(cv.GOpaque.Double())
with self.assertRaises(Exception): op.on(cv.GOpaque.Float())
with self.assertRaises(Exception): op.on(cv.GOpaque.String())
with self.assertRaises(Exception): op.on(cv.GOpaque.Point())
with self.assertRaises(Exception): op.on(cv.GOpaque.Point2f())
with self.assertRaises(Exception): op.on(cv.GOpaque.Size())
# NB: Check GArray
op = create_op([cv.GArray.Rect], [cv.GMat])
with self.assertRaises(Exception): op.on(cv.GArray.Bool())
with self.assertRaises(Exception): op.on(cv.GArray.Int())
with self.assertRaises(Exception): op.on(cv.GArray.Double())
with self.assertRaises(Exception): op.on(cv.GArray.Float())
with self.assertRaises(Exception): op.on(cv.GArray.String())
with self.assertRaises(Exception): op.on(cv.GArray.Point())
with self.assertRaises(Exception): op.on(cv.GArray.Point2f())
with self.assertRaises(Exception): op.on(cv.GArray.Size())
# Check other possible invalid options
with self.assertRaises(Exception): op.on(cv.GMat())
with self.assertRaises(Exception): op.on(cv.GScalar())
with self.assertRaises(Exception): op.on(1)
with self.assertRaises(Exception): op.on('foo')
with self.assertRaises(Exception): op.on(False)
with self.assertRaises(Exception): create_op([cv.GMat, int], [cv.GMat]).on(cv.GMat(), 'foo')
with self.assertRaises(Exception): create_op([cv.GMat, int], [cv.GMat]).on(cv.GMat())
def test_stateful_kernel(self):
@cv.gapi.op('custom.sum', in_types=[cv.GArray.Int], out_types=[cv.GOpaque.Int])
class GSum:
@staticmethod
def outMeta(arr_desc):
return cv.empty_gopaque_desc()
@cv.gapi.kernel(GSum)
class GSumImpl:
last_result = 0
@staticmethod
def run(arr):
GSumImpl.last_result = sum(arr)
return GSumImpl.last_result
g_in = cv.GArray.Int()
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(GSum.on(g_in)))
s = comp.apply(cv.gin([1, 2, 3, 4]), args=cv.compile_args(cv.gapi.kernels(GSumImpl)))
self.assertEqual(10, s)
s = comp.apply(cv.gin([1, 2, 8, 7]), args=cv.compile_args(cv.gapi.kernels(GSumImpl)))
self.assertEqual(18, s)
self.assertEqual(18, GSumImpl.last_result)
def test_opaq_with_custom_type(self):
@cv.gapi.op('custom.op', in_types=[cv.GOpaque.Any, cv.GOpaque.String], out_types=[cv.GOpaque.Any])
class GLookUp:
@staticmethod
def outMeta(opaq_desc0, opaq_desc1):
return cv.empty_gopaque_desc()
@cv.gapi.kernel(GLookUp)
class GLookUpImpl:
@staticmethod
def run(table, key):
return table[key]
g_table = cv.GOpaque.Any()
g_key = cv.GOpaque.String()
g_out = GLookUp.on(g_table, g_key)
comp = cv.GComputation(cv.GIn(g_table, g_key), cv.GOut(g_out))
table = {
'int': 42,
'str': 'hello, world!',
'tuple': (42, 42)
}
out = comp.apply(cv.gin(table, 'int'), args=cv.compile_args(cv.gapi.kernels(GLookUpImpl)))
self.assertEqual(42, out)
out = comp.apply(cv.gin(table, 'str'), args=cv.compile_args(cv.gapi.kernels(GLookUpImpl)))
self.assertEqual('hello, world!', out)
out = comp.apply(cv.gin(table, 'tuple'), args=cv.compile_args(cv.gapi.kernels(GLookUpImpl)))
self.assertEqual((42, 42), out)
def test_array_with_custom_type(self):
@cv.gapi.op('custom.op', in_types=[cv.GArray.Any, cv.GArray.Any], out_types=[cv.GArray.Any])
class GConcat:
@staticmethod
def outMeta(arr_desc0, arr_desc1):
return cv.empty_array_desc()
@cv.gapi.kernel(GConcat)
class GConcatImpl:
@staticmethod
def run(arr0, arr1):
return arr0 + arr1
g_arr0 = cv.GArray.Any()
g_arr1 = cv.GArray.Any()
g_out = GConcat.on(g_arr0, g_arr1)
comp = cv.GComputation(cv.GIn(g_arr0, g_arr1), cv.GOut(g_out))
arr0 = [(2, 2), 2.0]
arr1 = [3, 'str']
out = comp.apply(cv.gin(arr0, arr1),
args=cv.compile_args(cv.gapi.kernels(GConcatImpl)))
self.assertEqual(arr0 + arr1, out)
def test_raise_in_kernel(self):
@cv.gapi.op('custom.op', in_types=[cv.GMat, cv.GMat], out_types=[cv.GMat])
class GAdd:
@staticmethod
def outMeta(desc0, desc1):
return desc0
@cv.gapi.kernel(GAdd)
class GAddImpl:
@staticmethod
def run(img0, img1):
raise Exception('Error')
return img0 + img1
g_in0 = cv.GMat()
g_in1 = cv.GMat()
g_out = GAdd.on(g_in0, g_in1)
comp = cv.GComputation(cv.GIn(g_in0, g_in1), cv.GOut(g_out))
img0 = np.array([1, 2, 3])
img1 = np.array([1, 2, 3])
with self.assertRaises(Exception): comp.apply(cv.gin(img0, img1),
args=cv.compile_args(
cv.gapi.kernels(GAddImpl)))
def test_raise_in_outMeta(self):
@cv.gapi.op('custom.op', in_types=[cv.GMat, cv.GMat], out_types=[cv.GMat])
class GAdd:
@staticmethod
def outMeta(desc0, desc1):
raise NotImplementedError("outMeta isn't implemented")
@cv.gapi.kernel(GAdd)
class GAddImpl:
@staticmethod
def run(img0, img1):
return img0 + img1
g_in0 = cv.GMat()
g_in1 = cv.GMat()
g_out = GAdd.on(g_in0, g_in1)
comp = cv.GComputation(cv.GIn(g_in0, g_in1), cv.GOut(g_out))
img0 = np.array([1, 2, 3])
img1 = np.array([1, 2, 3])
with self.assertRaises(Exception): comp.apply(cv.gin(img0, img1),
args=cv.compile_args(
cv.gapi.kernels(GAddImpl)))
def test_invalid_outMeta(self):
@cv.gapi.op('custom.op', in_types=[cv.GMat, cv.GMat], out_types=[cv.GMat])
class GAdd:
@staticmethod
def outMeta(desc0, desc1):
# Invalid outMeta
return cv.empty_gopaque_desc()
@cv.gapi.kernel(GAdd)
class GAddImpl:
@staticmethod
def run(img0, img1):
return img0 + img1
g_in0 = cv.GMat()
g_in1 = cv.GMat()
g_out = GAdd.on(g_in0, g_in1)
comp = cv.GComputation(cv.GIn(g_in0, g_in1), cv.GOut(g_out))
img0 = np.array([1, 2, 3])
img1 = np.array([1, 2, 3])
# FIXME: Cause Bad variant access.
# Need to provide more descriptive error messsage.
with self.assertRaises(Exception): comp.apply(cv.gin(img0, img1),
args=cv.compile_args(
cv.gapi.kernels(GAddImpl)))
def test_pipeline_with_custom_kernels(self):
@cv.gapi.op('custom.resize', in_types=[cv.GMat, tuple], out_types=[cv.GMat])
class GResize:
@staticmethod
def outMeta(desc, size):
return desc.withSize(size)
@cv.gapi.kernel(GResize)
class GResizeImpl:
@staticmethod
def run(img, size):
return cv.resize(img, size)
@cv.gapi.op('custom.transpose', in_types=[cv.GMat, tuple], out_types=[cv.GMat])
class GTranspose:
@staticmethod
def outMeta(desc, order):
return desc
@cv.gapi.kernel(GTranspose)
class GTransposeImpl:
@staticmethod
def run(img, order):
return np.transpose(img, order)
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
img = cv.imread(img_path)
size = (32, 32)
order = (1, 0, 2)
# Dummy pipeline just to validate this case:
# gapi -> custom -> custom -> gapi
# OpenCV
expected = cv.cvtColor(img, cv.COLOR_BGR2RGB)
expected = cv.resize(expected, size)
expected = np.transpose(expected, order)
expected = cv.mean(expected)
# G-API
g_bgr = cv.GMat()
g_rgb = cv.gapi.BGR2RGB(g_bgr)
g_resized = GResize.on(g_rgb, size)
g_transposed = GTranspose.on(g_resized, order)
g_mean = cv.gapi.mean(g_transposed)
comp = cv.GComputation(cv.GIn(g_bgr), cv.GOut(g_mean))
actual = comp.apply(cv.gin(img), args=cv.compile_args(
cv.gapi.kernels(GResizeImpl, GTransposeImpl)))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
except unittest.SkipTest as e:
message = str(e)
class TestSkip(unittest.TestCase):
def setUp(self):
self.skipTest('Skip tests: ' + message)
def test_skip():
pass
pass
if __name__ == '__main__':
NewOpenCVTests.bootstrap()