mirror of
https://github.com/torvalds/linux.git
synced 2026-01-25 15:03:52 +08:00
crypto: nx - Use API partial block handling
Use the Crypto API partial block handling. Also switch to the generic export format. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
@@ -7,13 +7,14 @@
|
||||
* Author: Kent Yoder <yoder1@us.ibm.com>
|
||||
*/
|
||||
|
||||
#include <crypto/internal/hash.h>
|
||||
#include <crypto/aes.h>
|
||||
#include <crypto/algapi.h>
|
||||
#include <crypto/internal/hash.h>
|
||||
#include <linux/atomic.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/crypto.h>
|
||||
#include <asm/vio.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/string.h>
|
||||
|
||||
#include "nx_csbcpb.h"
|
||||
#include "nx.h"
|
||||
@@ -21,8 +22,6 @@
|
||||
|
||||
struct xcbc_state {
|
||||
u8 state[AES_BLOCK_SIZE];
|
||||
unsigned int count;
|
||||
u8 buffer[AES_BLOCK_SIZE];
|
||||
};
|
||||
|
||||
static int nx_xcbc_set_key(struct crypto_shash *desc,
|
||||
@@ -58,7 +57,7 @@ static int nx_xcbc_set_key(struct crypto_shash *desc,
|
||||
*/
|
||||
static int nx_xcbc_empty(struct shash_desc *desc, u8 *out)
|
||||
{
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc->tfm);
|
||||
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
|
||||
struct nx_sg *in_sg, *out_sg;
|
||||
u8 keys[2][AES_BLOCK_SIZE];
|
||||
@@ -135,9 +134,9 @@ out:
|
||||
return rc;
|
||||
}
|
||||
|
||||
static int nx_crypto_ctx_aes_xcbc_init2(struct crypto_tfm *tfm)
|
||||
static int nx_crypto_ctx_aes_xcbc_init2(struct crypto_shash *tfm)
|
||||
{
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(tfm);
|
||||
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
|
||||
int err;
|
||||
|
||||
@@ -166,31 +165,24 @@ static int nx_xcbc_update(struct shash_desc *desc,
|
||||
const u8 *data,
|
||||
unsigned int len)
|
||||
{
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc->tfm);
|
||||
struct xcbc_state *sctx = shash_desc_ctx(desc);
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
|
||||
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
|
||||
struct nx_sg *in_sg;
|
||||
struct nx_sg *out_sg;
|
||||
u32 to_process = 0, leftover, total;
|
||||
unsigned int max_sg_len;
|
||||
unsigned long irq_flags;
|
||||
u32 to_process, total;
|
||||
int rc = 0;
|
||||
int data_len;
|
||||
|
||||
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
|
||||
|
||||
memcpy(csbcpb->cpb.aes_xcbc.out_cv_mac, sctx->state, AES_BLOCK_SIZE);
|
||||
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
|
||||
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
|
||||
|
||||
total = sctx->count + len;
|
||||
|
||||
/* 2 cases for total data len:
|
||||
* 1: <= AES_BLOCK_SIZE: copy into state, return 0
|
||||
* 2: > AES_BLOCK_SIZE: process X blocks, copy in leftover
|
||||
*/
|
||||
if (total <= AES_BLOCK_SIZE) {
|
||||
memcpy(sctx->buffer + sctx->count, data, len);
|
||||
sctx->count += len;
|
||||
goto out;
|
||||
}
|
||||
total = len;
|
||||
|
||||
in_sg = nx_ctx->in_sg;
|
||||
max_sg_len = min_t(u64, nx_driver.of.max_sg_len/sizeof(struct nx_sg),
|
||||
@@ -200,7 +192,7 @@ static int nx_xcbc_update(struct shash_desc *desc,
|
||||
|
||||
data_len = AES_BLOCK_SIZE;
|
||||
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
|
||||
&len, nx_ctx->ap->sglen);
|
||||
&data_len, nx_ctx->ap->sglen);
|
||||
|
||||
if (data_len != AES_BLOCK_SIZE) {
|
||||
rc = -EINVAL;
|
||||
@@ -210,56 +202,21 @@ static int nx_xcbc_update(struct shash_desc *desc,
|
||||
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
|
||||
|
||||
do {
|
||||
to_process = total - to_process;
|
||||
to_process = to_process & ~(AES_BLOCK_SIZE - 1);
|
||||
to_process = total & ~(AES_BLOCK_SIZE - 1);
|
||||
|
||||
leftover = total - to_process;
|
||||
|
||||
/* the hardware will not accept a 0 byte operation for this
|
||||
* algorithm and the operation MUST be finalized to be correct.
|
||||
* So if we happen to get an update that falls on a block sized
|
||||
* boundary, we must save off the last block to finalize with
|
||||
* later. */
|
||||
if (!leftover) {
|
||||
to_process -= AES_BLOCK_SIZE;
|
||||
leftover = AES_BLOCK_SIZE;
|
||||
}
|
||||
|
||||
if (sctx->count) {
|
||||
data_len = sctx->count;
|
||||
in_sg = nx_build_sg_list(nx_ctx->in_sg,
|
||||
(u8 *) sctx->buffer,
|
||||
&data_len,
|
||||
max_sg_len);
|
||||
if (data_len != sctx->count) {
|
||||
rc = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
data_len = to_process - sctx->count;
|
||||
in_sg = nx_build_sg_list(in_sg,
|
||||
(u8 *) data,
|
||||
&data_len,
|
||||
&to_process,
|
||||
max_sg_len);
|
||||
|
||||
if (data_len != to_process - sctx->count) {
|
||||
rc = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
|
||||
sizeof(struct nx_sg);
|
||||
|
||||
/* we've hit the nx chip previously and we're updating again,
|
||||
* so copy over the partial digest */
|
||||
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
|
||||
memcpy(csbcpb->cpb.aes_xcbc.cv,
|
||||
csbcpb->cpb.aes_xcbc.out_cv_mac,
|
||||
AES_BLOCK_SIZE);
|
||||
}
|
||||
memcpy(csbcpb->cpb.aes_xcbc.cv,
|
||||
csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
|
||||
|
||||
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
|
||||
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
|
||||
rc = -EINVAL;
|
||||
goto out;
|
||||
@@ -271,28 +228,24 @@ static int nx_xcbc_update(struct shash_desc *desc,
|
||||
|
||||
atomic_inc(&(nx_ctx->stats->aes_ops));
|
||||
|
||||
/* everything after the first update is continuation */
|
||||
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
|
||||
|
||||
total -= to_process;
|
||||
data += to_process - sctx->count;
|
||||
sctx->count = 0;
|
||||
data += to_process;
|
||||
in_sg = nx_ctx->in_sg;
|
||||
} while (leftover > AES_BLOCK_SIZE);
|
||||
} while (total >= AES_BLOCK_SIZE);
|
||||
|
||||
/* copy the leftover back into the state struct */
|
||||
memcpy(sctx->buffer, data, leftover);
|
||||
sctx->count = leftover;
|
||||
rc = total;
|
||||
memcpy(sctx->state, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
|
||||
|
||||
out:
|
||||
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
|
||||
return rc;
|
||||
}
|
||||
|
||||
static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
|
||||
static int nx_xcbc_finup(struct shash_desc *desc, const u8 *src,
|
||||
unsigned int nbytes, u8 *out)
|
||||
{
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc->tfm);
|
||||
struct xcbc_state *sctx = shash_desc_ctx(desc);
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
|
||||
struct nx_csbcpb *csbcpb = nx_ctx->csbcpb;
|
||||
struct nx_sg *in_sg, *out_sg;
|
||||
unsigned long irq_flags;
|
||||
@@ -301,12 +254,10 @@ static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
|
||||
|
||||
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
|
||||
|
||||
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
|
||||
/* we've hit the nx chip previously, now we're finalizing,
|
||||
* so copy over the partial digest */
|
||||
memcpy(csbcpb->cpb.aes_xcbc.cv,
|
||||
csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE);
|
||||
} else if (sctx->count == 0) {
|
||||
if (nbytes) {
|
||||
/* non-zero final, so copy over the partial digest */
|
||||
memcpy(csbcpb->cpb.aes_xcbc.cv, sctx->state, AES_BLOCK_SIZE);
|
||||
} else {
|
||||
/*
|
||||
* we've never seen an update, so this is a 0 byte op. The
|
||||
* hardware cannot handle a 0 byte op, so just ECB to
|
||||
@@ -320,11 +271,11 @@ static int nx_xcbc_final(struct shash_desc *desc, u8 *out)
|
||||
* this is not an intermediate operation */
|
||||
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
|
||||
|
||||
len = sctx->count;
|
||||
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer,
|
||||
&len, nx_ctx->ap->sglen);
|
||||
len = nbytes;
|
||||
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)src, &len,
|
||||
nx_ctx->ap->sglen);
|
||||
|
||||
if (len != sctx->count) {
|
||||
if (len != nbytes) {
|
||||
rc = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
@@ -362,18 +313,19 @@ struct shash_alg nx_shash_aes_xcbc_alg = {
|
||||
.digestsize = AES_BLOCK_SIZE,
|
||||
.init = nx_xcbc_init,
|
||||
.update = nx_xcbc_update,
|
||||
.final = nx_xcbc_final,
|
||||
.finup = nx_xcbc_finup,
|
||||
.setkey = nx_xcbc_set_key,
|
||||
.descsize = sizeof(struct xcbc_state),
|
||||
.statesize = sizeof(struct xcbc_state),
|
||||
.init_tfm = nx_crypto_ctx_aes_xcbc_init2,
|
||||
.exit_tfm = nx_crypto_ctx_shash_exit,
|
||||
.base = {
|
||||
.cra_name = "xcbc(aes)",
|
||||
.cra_driver_name = "xcbc-aes-nx",
|
||||
.cra_priority = 300,
|
||||
.cra_flags = CRYPTO_AHASH_ALG_BLOCK_ONLY |
|
||||
CRYPTO_AHASH_ALG_FINAL_NONZERO,
|
||||
.cra_blocksize = AES_BLOCK_SIZE,
|
||||
.cra_module = THIS_MODULE,
|
||||
.cra_ctxsize = sizeof(struct nx_crypto_ctx),
|
||||
.cra_init = nx_crypto_ctx_aes_xcbc_init2,
|
||||
.cra_exit = nx_crypto_ctx_exit,
|
||||
}
|
||||
};
|
||||
|
||||
@@ -9,9 +9,12 @@
|
||||
|
||||
#include <crypto/internal/hash.h>
|
||||
#include <crypto/sha2.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <asm/vio.h>
|
||||
#include <asm/byteorder.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/unaligned.h>
|
||||
|
||||
#include "nx_csbcpb.h"
|
||||
#include "nx.h"
|
||||
@@ -19,12 +22,11 @@
|
||||
struct sha256_state_be {
|
||||
__be32 state[SHA256_DIGEST_SIZE / 4];
|
||||
u64 count;
|
||||
u8 buf[SHA256_BLOCK_SIZE];
|
||||
};
|
||||
|
||||
static int nx_crypto_ctx_sha256_init(struct crypto_tfm *tfm)
|
||||
static int nx_crypto_ctx_sha256_init(struct crypto_shash *tfm)
|
||||
{
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(tfm);
|
||||
int err;
|
||||
|
||||
err = nx_crypto_ctx_sha_init(tfm);
|
||||
@@ -40,11 +42,10 @@ static int nx_crypto_ctx_sha256_init(struct crypto_tfm *tfm)
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nx_sha256_init(struct shash_desc *desc) {
|
||||
static int nx_sha256_init(struct shash_desc *desc)
|
||||
{
|
||||
struct sha256_state_be *sctx = shash_desc_ctx(desc);
|
||||
|
||||
memset(sctx, 0, sizeof *sctx);
|
||||
|
||||
sctx->state[0] = __cpu_to_be32(SHA256_H0);
|
||||
sctx->state[1] = __cpu_to_be32(SHA256_H1);
|
||||
sctx->state[2] = __cpu_to_be32(SHA256_H2);
|
||||
@@ -61,30 +62,18 @@ static int nx_sha256_init(struct shash_desc *desc) {
|
||||
static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
|
||||
unsigned int len)
|
||||
{
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc->tfm);
|
||||
struct sha256_state_be *sctx = shash_desc_ctx(desc);
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
|
||||
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
|
||||
u64 to_process, leftover, total = len;
|
||||
struct nx_sg *out_sg;
|
||||
u64 to_process = 0, leftover, total;
|
||||
unsigned long irq_flags;
|
||||
int rc = 0;
|
||||
int data_len;
|
||||
u32 max_sg_len;
|
||||
u64 buf_len = (sctx->count % SHA256_BLOCK_SIZE);
|
||||
|
||||
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
|
||||
|
||||
/* 2 cases for total data len:
|
||||
* 1: < SHA256_BLOCK_SIZE: copy into state, return 0
|
||||
* 2: >= SHA256_BLOCK_SIZE: process X blocks, copy in leftover
|
||||
*/
|
||||
total = (sctx->count % SHA256_BLOCK_SIZE) + len;
|
||||
if (total < SHA256_BLOCK_SIZE) {
|
||||
memcpy(sctx->buf + buf_len, data, len);
|
||||
sctx->count += len;
|
||||
goto out;
|
||||
}
|
||||
|
||||
memcpy(csbcpb->cpb.sha256.message_digest, sctx->state, SHA256_DIGEST_SIZE);
|
||||
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
|
||||
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
|
||||
@@ -105,41 +94,17 @@ static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
|
||||
}
|
||||
|
||||
do {
|
||||
int used_sgs = 0;
|
||||
struct nx_sg *in_sg = nx_ctx->in_sg;
|
||||
|
||||
if (buf_len) {
|
||||
data_len = buf_len;
|
||||
in_sg = nx_build_sg_list(in_sg,
|
||||
(u8 *) sctx->buf,
|
||||
&data_len,
|
||||
max_sg_len);
|
||||
to_process = total & ~(SHA256_BLOCK_SIZE - 1);
|
||||
|
||||
if (data_len != buf_len) {
|
||||
rc = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
used_sgs = in_sg - nx_ctx->in_sg;
|
||||
}
|
||||
|
||||
/* to_process: SHA256_BLOCK_SIZE aligned chunk to be
|
||||
* processed in this iteration. This value is restricted
|
||||
* by sg list limits and number of sgs we already used
|
||||
* for leftover data. (see above)
|
||||
* In ideal case, we could allow NX_PAGE_SIZE * max_sg_len,
|
||||
* but because data may not be aligned, we need to account
|
||||
* for that too. */
|
||||
to_process = min_t(u64, total,
|
||||
(max_sg_len - 1 - used_sgs) * NX_PAGE_SIZE);
|
||||
to_process = to_process & ~(SHA256_BLOCK_SIZE - 1);
|
||||
|
||||
data_len = to_process - buf_len;
|
||||
data_len = to_process;
|
||||
in_sg = nx_build_sg_list(in_sg, (u8 *) data,
|
||||
&data_len, max_sg_len);
|
||||
|
||||
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
|
||||
|
||||
to_process = data_len + buf_len;
|
||||
to_process = data_len;
|
||||
leftover = total - to_process;
|
||||
|
||||
/*
|
||||
@@ -162,26 +127,22 @@ static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
|
||||
atomic_inc(&(nx_ctx->stats->sha256_ops));
|
||||
|
||||
total -= to_process;
|
||||
data += to_process - buf_len;
|
||||
buf_len = 0;
|
||||
|
||||
data += to_process;
|
||||
sctx->count += to_process;
|
||||
} while (leftover >= SHA256_BLOCK_SIZE);
|
||||
|
||||
/* copy the leftover back into the state struct */
|
||||
if (leftover)
|
||||
memcpy(sctx->buf, data, leftover);
|
||||
|
||||
sctx->count += len;
|
||||
rc = leftover;
|
||||
memcpy(sctx->state, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
|
||||
out:
|
||||
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
|
||||
return rc;
|
||||
}
|
||||
|
||||
static int nx_sha256_final(struct shash_desc *desc, u8 *out)
|
||||
static int nx_sha256_finup(struct shash_desc *desc, const u8 *src,
|
||||
unsigned int nbytes, u8 *out)
|
||||
{
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc->tfm);
|
||||
struct sha256_state_be *sctx = shash_desc_ctx(desc);
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
|
||||
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
|
||||
struct nx_sg *in_sg, *out_sg;
|
||||
unsigned long irq_flags;
|
||||
@@ -197,25 +158,19 @@ static int nx_sha256_final(struct shash_desc *desc, u8 *out)
|
||||
nx_ctx->ap->databytelen/NX_PAGE_SIZE);
|
||||
|
||||
/* final is represented by continuing the operation and indicating that
|
||||
* this is not an intermediate operation */
|
||||
if (sctx->count >= SHA256_BLOCK_SIZE) {
|
||||
/* we've hit the nx chip previously, now we're finalizing,
|
||||
* so copy over the partial digest */
|
||||
memcpy(csbcpb->cpb.sha256.input_partial_digest, sctx->state, SHA256_DIGEST_SIZE);
|
||||
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
|
||||
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
|
||||
} else {
|
||||
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
|
||||
NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
|
||||
}
|
||||
* this is not an intermediate operation
|
||||
* copy over the partial digest */
|
||||
memcpy(csbcpb->cpb.sha256.input_partial_digest, sctx->state, SHA256_DIGEST_SIZE);
|
||||
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
|
||||
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
|
||||
|
||||
sctx->count += nbytes;
|
||||
csbcpb->cpb.sha256.message_bit_length = (u64) (sctx->count * 8);
|
||||
|
||||
len = sctx->count & (SHA256_BLOCK_SIZE - 1);
|
||||
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *) sctx->buf,
|
||||
&len, max_sg_len);
|
||||
len = nbytes;
|
||||
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)src, &len, max_sg_len);
|
||||
|
||||
if (len != (sctx->count & (SHA256_BLOCK_SIZE - 1))) {
|
||||
if (len != nbytes) {
|
||||
rc = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
@@ -251,18 +206,34 @@ out:
|
||||
static int nx_sha256_export(struct shash_desc *desc, void *out)
|
||||
{
|
||||
struct sha256_state_be *sctx = shash_desc_ctx(desc);
|
||||
union {
|
||||
u8 *u8;
|
||||
u32 *u32;
|
||||
u64 *u64;
|
||||
} p = { .u8 = out };
|
||||
int i;
|
||||
|
||||
memcpy(out, sctx, sizeof(*sctx));
|
||||
for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(*p.u32); i++)
|
||||
put_unaligned(be32_to_cpu(sctx->state[i]), p.u32++);
|
||||
|
||||
put_unaligned(sctx->count, p.u64++);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nx_sha256_import(struct shash_desc *desc, const void *in)
|
||||
{
|
||||
struct sha256_state_be *sctx = shash_desc_ctx(desc);
|
||||
union {
|
||||
const u8 *u8;
|
||||
const u32 *u32;
|
||||
const u64 *u64;
|
||||
} p = { .u8 = in };
|
||||
int i;
|
||||
|
||||
memcpy(sctx, in, sizeof(*sctx));
|
||||
for (i = 0; i < SHA256_DIGEST_SIZE / sizeof(*p.u32); i++)
|
||||
sctx->state[i] = cpu_to_be32(get_unaligned(p.u32++));
|
||||
|
||||
sctx->count = get_unaligned(p.u64++);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -270,19 +241,20 @@ struct shash_alg nx_shash_sha256_alg = {
|
||||
.digestsize = SHA256_DIGEST_SIZE,
|
||||
.init = nx_sha256_init,
|
||||
.update = nx_sha256_update,
|
||||
.final = nx_sha256_final,
|
||||
.finup = nx_sha256_finup,
|
||||
.export = nx_sha256_export,
|
||||
.import = nx_sha256_import,
|
||||
.init_tfm = nx_crypto_ctx_sha256_init,
|
||||
.exit_tfm = nx_crypto_ctx_shash_exit,
|
||||
.descsize = sizeof(struct sha256_state_be),
|
||||
.statesize = sizeof(struct sha256_state_be),
|
||||
.base = {
|
||||
.cra_name = "sha256",
|
||||
.cra_driver_name = "sha256-nx",
|
||||
.cra_priority = 300,
|
||||
.cra_flags = CRYPTO_AHASH_ALG_BLOCK_ONLY,
|
||||
.cra_blocksize = SHA256_BLOCK_SIZE,
|
||||
.cra_module = THIS_MODULE,
|
||||
.cra_ctxsize = sizeof(struct nx_crypto_ctx),
|
||||
.cra_init = nx_crypto_ctx_sha256_init,
|
||||
.cra_exit = nx_crypto_ctx_exit,
|
||||
}
|
||||
};
|
||||
|
||||
@@ -9,8 +9,12 @@
|
||||
|
||||
#include <crypto/internal/hash.h>
|
||||
#include <crypto/sha2.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <asm/vio.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/unaligned.h>
|
||||
|
||||
#include "nx_csbcpb.h"
|
||||
#include "nx.h"
|
||||
@@ -18,12 +22,11 @@
|
||||
struct sha512_state_be {
|
||||
__be64 state[SHA512_DIGEST_SIZE / 8];
|
||||
u64 count[2];
|
||||
u8 buf[SHA512_BLOCK_SIZE];
|
||||
};
|
||||
|
||||
static int nx_crypto_ctx_sha512_init(struct crypto_tfm *tfm)
|
||||
static int nx_crypto_ctx_sha512_init(struct crypto_shash *tfm)
|
||||
{
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(tfm);
|
||||
int err;
|
||||
|
||||
err = nx_crypto_ctx_sha_init(tfm);
|
||||
@@ -43,8 +46,6 @@ static int nx_sha512_init(struct shash_desc *desc)
|
||||
{
|
||||
struct sha512_state_be *sctx = shash_desc_ctx(desc);
|
||||
|
||||
memset(sctx, 0, sizeof *sctx);
|
||||
|
||||
sctx->state[0] = __cpu_to_be64(SHA512_H0);
|
||||
sctx->state[1] = __cpu_to_be64(SHA512_H1);
|
||||
sctx->state[2] = __cpu_to_be64(SHA512_H2);
|
||||
@@ -54,6 +55,7 @@ static int nx_sha512_init(struct shash_desc *desc)
|
||||
sctx->state[6] = __cpu_to_be64(SHA512_H6);
|
||||
sctx->state[7] = __cpu_to_be64(SHA512_H7);
|
||||
sctx->count[0] = 0;
|
||||
sctx->count[1] = 0;
|
||||
|
||||
return 0;
|
||||
}
|
||||
@@ -61,30 +63,18 @@ static int nx_sha512_init(struct shash_desc *desc)
|
||||
static int nx_sha512_update(struct shash_desc *desc, const u8 *data,
|
||||
unsigned int len)
|
||||
{
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc->tfm);
|
||||
struct sha512_state_be *sctx = shash_desc_ctx(desc);
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
|
||||
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
|
||||
u64 to_process, leftover, total = len;
|
||||
struct nx_sg *out_sg;
|
||||
u64 to_process, leftover = 0, total;
|
||||
unsigned long irq_flags;
|
||||
int rc = 0;
|
||||
int data_len;
|
||||
u32 max_sg_len;
|
||||
u64 buf_len = (sctx->count[0] % SHA512_BLOCK_SIZE);
|
||||
|
||||
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
|
||||
|
||||
/* 2 cases for total data len:
|
||||
* 1: < SHA512_BLOCK_SIZE: copy into state, return 0
|
||||
* 2: >= SHA512_BLOCK_SIZE: process X blocks, copy in leftover
|
||||
*/
|
||||
total = (sctx->count[0] % SHA512_BLOCK_SIZE) + len;
|
||||
if (total < SHA512_BLOCK_SIZE) {
|
||||
memcpy(sctx->buf + buf_len, data, len);
|
||||
sctx->count[0] += len;
|
||||
goto out;
|
||||
}
|
||||
|
||||
memcpy(csbcpb->cpb.sha512.message_digest, sctx->state, SHA512_DIGEST_SIZE);
|
||||
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
|
||||
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
|
||||
@@ -105,45 +95,17 @@ static int nx_sha512_update(struct shash_desc *desc, const u8 *data,
|
||||
}
|
||||
|
||||
do {
|
||||
int used_sgs = 0;
|
||||
struct nx_sg *in_sg = nx_ctx->in_sg;
|
||||
|
||||
if (buf_len) {
|
||||
data_len = buf_len;
|
||||
in_sg = nx_build_sg_list(in_sg,
|
||||
(u8 *) sctx->buf,
|
||||
&data_len, max_sg_len);
|
||||
to_process = total & ~(SHA512_BLOCK_SIZE - 1);
|
||||
|
||||
if (data_len != buf_len) {
|
||||
rc = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
used_sgs = in_sg - nx_ctx->in_sg;
|
||||
}
|
||||
|
||||
/* to_process: SHA512_BLOCK_SIZE aligned chunk to be
|
||||
* processed in this iteration. This value is restricted
|
||||
* by sg list limits and number of sgs we already used
|
||||
* for leftover data. (see above)
|
||||
* In ideal case, we could allow NX_PAGE_SIZE * max_sg_len,
|
||||
* but because data may not be aligned, we need to account
|
||||
* for that too. */
|
||||
to_process = min_t(u64, total,
|
||||
(max_sg_len - 1 - used_sgs) * NX_PAGE_SIZE);
|
||||
to_process = to_process & ~(SHA512_BLOCK_SIZE - 1);
|
||||
|
||||
data_len = to_process - buf_len;
|
||||
data_len = to_process;
|
||||
in_sg = nx_build_sg_list(in_sg, (u8 *) data,
|
||||
&data_len, max_sg_len);
|
||||
|
||||
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
|
||||
|
||||
if (data_len != (to_process - buf_len)) {
|
||||
rc = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
to_process = data_len + buf_len;
|
||||
to_process = data_len;
|
||||
leftover = total - to_process;
|
||||
|
||||
/*
|
||||
@@ -166,30 +128,29 @@ static int nx_sha512_update(struct shash_desc *desc, const u8 *data,
|
||||
atomic_inc(&(nx_ctx->stats->sha512_ops));
|
||||
|
||||
total -= to_process;
|
||||
data += to_process - buf_len;
|
||||
buf_len = 0;
|
||||
|
||||
data += to_process;
|
||||
sctx->count[0] += to_process;
|
||||
if (sctx->count[0] < to_process)
|
||||
sctx->count[1]++;
|
||||
} while (leftover >= SHA512_BLOCK_SIZE);
|
||||
|
||||
/* copy the leftover back into the state struct */
|
||||
if (leftover)
|
||||
memcpy(sctx->buf, data, leftover);
|
||||
sctx->count[0] += len;
|
||||
rc = leftover;
|
||||
memcpy(sctx->state, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
|
||||
out:
|
||||
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
|
||||
return rc;
|
||||
}
|
||||
|
||||
static int nx_sha512_final(struct shash_desc *desc, u8 *out)
|
||||
static int nx_sha512_finup(struct shash_desc *desc, const u8 *src,
|
||||
unsigned int nbytes, u8 *out)
|
||||
{
|
||||
struct sha512_state_be *sctx = shash_desc_ctx(desc);
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
|
||||
struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc->tfm);
|
||||
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
|
||||
struct nx_sg *in_sg, *out_sg;
|
||||
u32 max_sg_len;
|
||||
u64 count0;
|
||||
unsigned long irq_flags;
|
||||
u64 count0, count1;
|
||||
int rc = 0;
|
||||
int len;
|
||||
|
||||
@@ -201,30 +162,23 @@ static int nx_sha512_final(struct shash_desc *desc, u8 *out)
|
||||
nx_ctx->ap->databytelen/NX_PAGE_SIZE);
|
||||
|
||||
/* final is represented by continuing the operation and indicating that
|
||||
* this is not an intermediate operation */
|
||||
if (sctx->count[0] >= SHA512_BLOCK_SIZE) {
|
||||
/* we've hit the nx chip previously, now we're finalizing,
|
||||
* so copy over the partial digest */
|
||||
memcpy(csbcpb->cpb.sha512.input_partial_digest, sctx->state,
|
||||
SHA512_DIGEST_SIZE);
|
||||
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
|
||||
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
|
||||
} else {
|
||||
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
|
||||
NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
|
||||
}
|
||||
|
||||
* this is not an intermediate operation
|
||||
* copy over the partial digest */
|
||||
memcpy(csbcpb->cpb.sha512.input_partial_digest, sctx->state, SHA512_DIGEST_SIZE);
|
||||
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
|
||||
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
|
||||
|
||||
count0 = sctx->count[0] * 8;
|
||||
count0 = sctx->count[0] + nbytes;
|
||||
count1 = sctx->count[1];
|
||||
|
||||
csbcpb->cpb.sha512.message_bit_length_lo = count0;
|
||||
csbcpb->cpb.sha512.message_bit_length_lo = count0 << 3;
|
||||
csbcpb->cpb.sha512.message_bit_length_hi = (count1 << 3) |
|
||||
(count0 >> 61);
|
||||
|
||||
len = sctx->count[0] & (SHA512_BLOCK_SIZE - 1);
|
||||
in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buf, &len,
|
||||
max_sg_len);
|
||||
len = nbytes;
|
||||
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)src, &len, max_sg_len);
|
||||
|
||||
if (len != (sctx->count[0] & (SHA512_BLOCK_SIZE - 1))) {
|
||||
if (len != nbytes) {
|
||||
rc = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
@@ -246,7 +200,7 @@ static int nx_sha512_final(struct shash_desc *desc, u8 *out)
|
||||
goto out;
|
||||
|
||||
atomic_inc(&(nx_ctx->stats->sha512_ops));
|
||||
atomic64_add(sctx->count[0], &(nx_ctx->stats->sha512_bytes));
|
||||
atomic64_add(count0, &(nx_ctx->stats->sha512_bytes));
|
||||
|
||||
memcpy(out, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
|
||||
out:
|
||||
@@ -257,18 +211,34 @@ out:
|
||||
static int nx_sha512_export(struct shash_desc *desc, void *out)
|
||||
{
|
||||
struct sha512_state_be *sctx = shash_desc_ctx(desc);
|
||||
union {
|
||||
u8 *u8;
|
||||
u64 *u64;
|
||||
} p = { .u8 = out };
|
||||
int i;
|
||||
|
||||
memcpy(out, sctx, sizeof(*sctx));
|
||||
for (i = 0; i < SHA512_DIGEST_SIZE / sizeof(*p.u64); i++)
|
||||
put_unaligned(be64_to_cpu(sctx->state[i]), p.u64++);
|
||||
|
||||
put_unaligned(sctx->count[0], p.u64++);
|
||||
put_unaligned(sctx->count[1], p.u64++);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int nx_sha512_import(struct shash_desc *desc, const void *in)
|
||||
{
|
||||
struct sha512_state_be *sctx = shash_desc_ctx(desc);
|
||||
union {
|
||||
const u8 *u8;
|
||||
const u64 *u64;
|
||||
} p = { .u8 = in };
|
||||
int i;
|
||||
|
||||
memcpy(sctx, in, sizeof(*sctx));
|
||||
for (i = 0; i < SHA512_DIGEST_SIZE / sizeof(*p.u64); i++)
|
||||
sctx->state[i] = cpu_to_be64(get_unaligned(p.u64++));
|
||||
|
||||
sctx->count[0] = get_unaligned(p.u64++);
|
||||
sctx->count[1] = get_unaligned(p.u64++);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -276,19 +246,20 @@ struct shash_alg nx_shash_sha512_alg = {
|
||||
.digestsize = SHA512_DIGEST_SIZE,
|
||||
.init = nx_sha512_init,
|
||||
.update = nx_sha512_update,
|
||||
.final = nx_sha512_final,
|
||||
.finup = nx_sha512_finup,
|
||||
.export = nx_sha512_export,
|
||||
.import = nx_sha512_import,
|
||||
.init_tfm = nx_crypto_ctx_sha512_init,
|
||||
.exit_tfm = nx_crypto_ctx_shash_exit,
|
||||
.descsize = sizeof(struct sha512_state_be),
|
||||
.statesize = sizeof(struct sha512_state_be),
|
||||
.base = {
|
||||
.cra_name = "sha512",
|
||||
.cra_driver_name = "sha512-nx",
|
||||
.cra_priority = 300,
|
||||
.cra_flags = CRYPTO_AHASH_ALG_BLOCK_ONLY,
|
||||
.cra_blocksize = SHA512_BLOCK_SIZE,
|
||||
.cra_module = THIS_MODULE,
|
||||
.cra_ctxsize = sizeof(struct nx_crypto_ctx),
|
||||
.cra_init = nx_crypto_ctx_sha512_init,
|
||||
.cra_exit = nx_crypto_ctx_exit,
|
||||
}
|
||||
};
|
||||
|
||||
@@ -124,8 +124,6 @@ struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
|
||||
}
|
||||
|
||||
if ((sg - sg_head) == sgmax) {
|
||||
pr_err("nx: scatter/gather list overflow, pid: %d\n",
|
||||
current->pid);
|
||||
sg++;
|
||||
break;
|
||||
}
|
||||
@@ -702,14 +700,14 @@ int nx_crypto_ctx_aes_ecb_init(struct crypto_skcipher *tfm)
|
||||
NX_MODE_AES_ECB);
|
||||
}
|
||||
|
||||
int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
|
||||
int nx_crypto_ctx_sha_init(struct crypto_shash *tfm)
|
||||
{
|
||||
return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
|
||||
return nx_crypto_ctx_init(crypto_shash_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
|
||||
}
|
||||
|
||||
int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
|
||||
int nx_crypto_ctx_aes_xcbc_init(struct crypto_shash *tfm)
|
||||
{
|
||||
return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
|
||||
return nx_crypto_ctx_init(crypto_shash_ctx(tfm), NX_FC_AES,
|
||||
NX_MODE_AES_XCBC_MAC);
|
||||
}
|
||||
|
||||
@@ -744,6 +742,11 @@ void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm)
|
||||
kfree_sensitive(nx_ctx->kmem);
|
||||
}
|
||||
|
||||
void nx_crypto_ctx_shash_exit(struct crypto_shash *tfm)
|
||||
{
|
||||
nx_crypto_ctx_exit(crypto_shash_ctx(tfm));
|
||||
}
|
||||
|
||||
static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
|
||||
{
|
||||
dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
#ifndef __NX_H__
|
||||
#define __NX_H__
|
||||
|
||||
#include <asm/vio.h>
|
||||
#include <crypto/ctr.h>
|
||||
#include <crypto/internal/aead.h>
|
||||
#include <crypto/internal/hash.h>
|
||||
@@ -147,14 +148,15 @@ struct scatterlist;
|
||||
/* prototypes */
|
||||
int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm);
|
||||
int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm);
|
||||
int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm);
|
||||
int nx_crypto_ctx_aes_xcbc_init(struct crypto_shash *tfm);
|
||||
int nx_crypto_ctx_aes_ctr_init(struct crypto_skcipher *tfm);
|
||||
int nx_crypto_ctx_aes_cbc_init(struct crypto_skcipher *tfm);
|
||||
int nx_crypto_ctx_aes_ecb_init(struct crypto_skcipher *tfm);
|
||||
int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm);
|
||||
int nx_crypto_ctx_sha_init(struct crypto_shash *tfm);
|
||||
void nx_crypto_ctx_exit(struct crypto_tfm *tfm);
|
||||
void nx_crypto_ctx_skcipher_exit(struct crypto_skcipher *tfm);
|
||||
void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm);
|
||||
void nx_crypto_ctx_shash_exit(struct crypto_shash *tfm);
|
||||
void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function);
|
||||
int nx_hcall_sync(struct nx_crypto_ctx *ctx, struct vio_pfo_op *op,
|
||||
u32 may_sleep);
|
||||
|
||||
Reference in New Issue
Block a user