Merge tag 'memory-controller-drv-6.16' of https://git.kernel.org/pub/scm/linux/kernel/git/krzk/linux-mem-ctrl into soc/drivers

Memory controller drivers for v6.16

1. Mediatek: Add support for MT6893 MTK SMI.
2. STM32: Add new driver for STM32 Octo Memory Manager (OMM), which
   manages muxing between two OSPI busses.
3. Several cleanups and minor improvements (OMAP GPMC, Kconfig entries,
   BT1 L2).

* tag 'memory-controller-drv-6.16' of https://git.kernel.org/pub/scm/linux/kernel/git/krzk/linux-mem-ctrl:
  MAINTAINERS: add entry for STM32 OCTO MEMORY MANAGER driver
  memory: Add STM32 Octo Memory Manager driver
  dt-bindings: memory-controllers: Add STM32 Octo Memory Manager controller
  bus: firewall: Fix missing static inline annotations for stubs
  memory: bt1-l2-ctl: replace scnprintf() with sysfs_emit()
  memory: mtk-smi: Add support for Dimensity 1200 MT6893 SMI
  dt-bindings: memory: mtk-smi: Add support for MT6893
  memory: tegra: Do not enable by default during compile testing
  memory: Simplify 'default' choice in Kconfig
  memory: omap-gpmc: remove GPIO set() and direction_output() callbacks
  memory: omap-gpmc: use the dedicated define for GPIO direction

Link: https://lore.kernel.org/r/20250508093451.55755-2-krzysztof.kozlowski@linaro.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
This commit is contained in:
Arnd Bergmann
2025-05-09 23:11:48 +02:00
12 changed files with 798 additions and 28 deletions

View File

@@ -33,6 +33,7 @@ properties:
- mediatek,mt2712-smi-common
- mediatek,mt6779-smi-common
- mediatek,mt6795-smi-common
- mediatek,mt6893-smi-common
- mediatek,mt8167-smi-common
- mediatek,mt8173-smi-common
- mediatek,mt8183-smi-common

View File

@@ -21,6 +21,7 @@ properties:
- mediatek,mt2712-smi-larb
- mediatek,mt6779-smi-larb
- mediatek,mt6795-smi-larb
- mediatek,mt6893-smi-larb
- mediatek,mt8167-smi-larb
- mediatek,mt8173-smi-larb
- mediatek,mt8183-smi-larb

View File

@@ -0,0 +1,226 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/memory-controllers/st,stm32mp25-omm.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: STM32 Octo Memory Manager (OMM)
maintainers:
- Patrice Chotard <patrice.chotard@foss.st.com>
description: |
The STM32 Octo Memory Manager is a low-level interface that enables an
efficient OCTOSPI pin assignment with a full I/O matrix (before alternate
function map) and multiplex of single/dual/quad/octal SPI interfaces over
the same bus. It Supports up to:
- Two single/dual/quad/octal SPI interfaces
- Two ports for pin assignment
properties:
compatible:
const: st,stm32mp25-omm
"#address-cells":
const: 2
"#size-cells":
const: 1
ranges:
description: |
Reflects the memory layout per OSPI instance.
Format:
<chip-select> 0 <registers base address> <size>
minItems: 2
maxItems: 2
reg:
items:
- description: OMM registers
- description: OMM memory map area
reg-names:
items:
- const: regs
- const: memory_map
memory-region:
description:
Memory region shared between the 2 OCTOSPI instance.
One or two phandle to a node describing a memory mapped region
depending of child number.
minItems: 1
maxItems: 2
memory-region-names:
description:
Identify to which OSPI instance the memory region belongs to.
items:
enum: [ospi1, ospi2]
minItems: 1
maxItems: 2
clocks:
maxItems: 3
clock-names:
items:
- const: omm
- const: ospi1
- const: ospi2
resets:
maxItems: 3
reset-names:
items:
- const: omm
- const: ospi1
- const: ospi2
access-controllers:
maxItems: 1
power-domains:
maxItems: 1
st,syscfg-amcr:
$ref: /schemas/types.yaml#/definitions/phandle-array
description: |
The Address Mapping Control Register (AMCR) is used to split the 256MB
memory map area shared between the 2 OSPI instance. The Octo Memory
Manager sets the AMCR depending of the memory-region configuration.
The memory split bitmask description is:
- 000: OCTOSPI1 (256 Mbytes), OCTOSPI2 unmapped
- 001: OCTOSPI1 (192 Mbytes), OCTOSPI2 (64 Mbytes)
- 010: OCTOSPI1 (128 Mbytes), OCTOSPI2 (128 Mbytes)
- 011: OCTOSPI1 (64 Mbytes), OCTOSPI2 (192 Mbytes)
- 1xx: OCTOSPI1 unmapped, OCTOSPI2 (256 Mbytes)
items:
- items:
- description: phandle to syscfg
- description: register offset within syscfg
- description: register bitmask for memory split
st,omm-req2ack-ns:
description:
In multiplexed mode (MUXEN = 1), this field defines the time in
nanoseconds between two transactions.
default: 0
st,omm-cssel-ovr:
$ref: /schemas/types.yaml#/definitions/uint32
description: |
Configure the chip select selector override for the 2 OCTOSPIs.
- 0: OCTOSPI1 chip select send to NCS1 OCTOSPI2 chip select send to NCS1
- 1: OCTOSPI1 chip select send to NCS2 OCTOSPI2 chip select send to NCS1
- 2: OCTOSPI1 chip select send to NCS1 OCTOSPI2 chip select send to NCS2
- 3: OCTOSPI1 chip select send to NCS2 OCTOSPI2 chip select send to NCS2
minimum: 0
maximum: 3
default: 0
st,omm-mux:
$ref: /schemas/types.yaml#/definitions/uint32
description: |
Configure the muxing between the 2 OCTOSPIs busses and the 2 output ports.
- 0: direct mode
- 1: mux OCTOSPI1 and OCTOSPI2 to port 1
- 2: swapped mode
- 3: mux OCTOSPI1 and OCTOSPI2 to port 2
minimum: 0
maximum: 3
default: 0
patternProperties:
^spi@[0-9]:
type: object
$ref: /schemas/spi/st,stm32mp25-ospi.yaml#
description: Required spi child node
required:
- compatible
- reg
- "#address-cells"
- "#size-cells"
- clocks
- clock-names
- resets
- reset-names
- st,syscfg-amcr
- ranges
additionalProperties: false
examples:
- |
#include <dt-bindings/clock/st,stm32mp25-rcc.h>
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/reset/st,stm32mp25-rcc.h>
ommanager@40500000 {
compatible = "st,stm32mp25-omm";
reg = <0x40500000 0x400>, <0x60000000 0x10000000>;
reg-names = "regs", "memory_map";
ranges = <0 0 0x40430000 0x400>,
<1 0 0x40440000 0x400>;
memory-region = <&mm_ospi1>, <&mm_ospi2>;
memory-region-names = "ospi1", "ospi2";
pinctrl-0 = <&ospi_port1_clk_pins_a
&ospi_port1_io03_pins_a
&ospi_port1_cs0_pins_a>;
pinctrl-1 = <&ospi_port1_clk_sleep_pins_a
&ospi_port1_io03_sleep_pins_a
&ospi_port1_cs0_sleep_pins_a>;
pinctrl-names = "default", "sleep";
clocks = <&rcc CK_BUS_OSPIIOM>,
<&scmi_clk CK_SCMI_OSPI1>,
<&scmi_clk CK_SCMI_OSPI2>;
clock-names = "omm", "ospi1", "ospi2";
resets = <&rcc OSPIIOM_R>,
<&scmi_reset RST_SCMI_OSPI1>,
<&scmi_reset RST_SCMI_OSPI2>;
reset-names = "omm", "ospi1", "ospi2";
access-controllers = <&rifsc 111>;
power-domains = <&CLUSTER_PD>;
#address-cells = <2>;
#size-cells = <1>;
st,syscfg-amcr = <&syscfg 0x2c00 0x7>;
st,omm-req2ack-ns = <0>;
st,omm-mux = <0>;
st,omm-cssel-ovr = <0>;
spi@0 {
compatible = "st,stm32mp25-ospi";
reg = <0 0 0x400>;
memory-region = <&mm_ospi1>;
interrupts = <GIC_SPI 163 IRQ_TYPE_LEVEL_HIGH>;
dmas = <&hpdma 2 0x62 0x00003121 0x0>,
<&hpdma 2 0x42 0x00003112 0x0>;
dma-names = "tx", "rx";
clocks = <&scmi_clk CK_SCMI_OSPI1>;
resets = <&scmi_reset RST_SCMI_OSPI1>, <&scmi_reset RST_SCMI_OSPI1DLL>;
access-controllers = <&rifsc 74>;
power-domains = <&CLUSTER_PD>;
#address-cells = <1>;
#size-cells = <0>;
st,syscfg-dlyb = <&syscfg 0x1000>;
};
spi@1 {
compatible = "st,stm32mp25-ospi";
reg = <1 0 0x400>;
memory-region = <&mm_ospi1>;
interrupts = <GIC_SPI 164 IRQ_TYPE_LEVEL_HIGH>;
dmas = <&hpdma 3 0x62 0x00003121 0x0>,
<&hpdma 3 0x42 0x00003112 0x0>;
dma-names = "tx", "rx";
clocks = <&scmi_clk CK_KER_OSPI2>;
resets = <&scmi_reset RST_SCMI_OSPI2>, <&scmi_reset RST_SCMI_OSPI1DLL>;
access-controllers = <&rifsc 75>;
power-domains = <&CLUSTER_PD>;
#address-cells = <1>;
#size-cells = <0>;
st,syscfg-dlyb = <&syscfg 0x1000>;
};
};

View File

@@ -22939,6 +22939,12 @@ L: linux-i2c@vger.kernel.org
S: Maintained
F: drivers/i2c/busses/i2c-stm32*
ST STM32 OCTO MEMORY MANAGER
M: Patrice Chotard <patrice.chotard@foss.st.com>
S: Maintained
F: Documentation/devicetree/bindings/memory-controllers/st,stm32mp25-omm.yaml
F: drivers/memory/stm32_omm.c
ST STM32 SPI DRIVER
M: Alain Volmat <alain.volmat@foss.st.com>
L: linux-spi@vger.kernel.org

View File

@@ -32,7 +32,7 @@ config ARM_PL172_MPMC
config ATMEL_EBI
bool "Atmel EBI driver"
default y if ARCH_AT91
default ARCH_AT91
depends on ARCH_AT91 || COMPILE_TEST
depends on OF
select MFD_SYSCON
@@ -147,7 +147,7 @@ config FPGA_DFL_EMIF
config MVEBU_DEVBUS
bool "Marvell EBU Device Bus Controller"
default y if PLAT_ORION
default PLAT_ORION
depends on PLAT_ORION || COMPILE_TEST
depends on OF
help
@@ -198,7 +198,7 @@ config DA8XX_DDRCTL
config PL353_SMC
tristate "ARM PL35X Static Memory Controller(SMC) driver"
default y if ARM
default ARM
depends on ARM || COMPILE_TEST
depends on ARM_AMBA
help
@@ -225,6 +225,23 @@ config STM32_FMC2_EBI
devices (like SRAM, ethernet adapters, FPGAs, LCD displays, ...) on
SOCs containing the FMC2 External Bus Interface.
config STM32_OMM
tristate "STM32 Octo Memory Manager"
depends on SPI_STM32_OSPI || COMPILE_TEST
help
This driver manages the muxing between the 2 OSPI busses and
the 2 output ports. There are 4 possible muxing configurations:
- direct mode (no multiplexing): OSPI1 output is on port 1 and OSPI2
output is on port 2
- OSPI1 and OSPI2 are multiplexed over the same output port 1
- swapped mode (no multiplexing), OSPI1 output is on port 2,
OSPI2 output is on port 1
- OSPI1 and OSPI2 are multiplexed over the same output port 2
It also manages :
- the split of the memory area shared between the 2 OSPI instances.
- chip select selection override.
- the time between 2 transactions in multiplexed mode.
source "drivers/memory/samsung/Kconfig"
source "drivers/memory/tegra/Kconfig"

View File

@@ -24,6 +24,7 @@ obj-$(CONFIG_DA8XX_DDRCTL) += da8xx-ddrctl.o
obj-$(CONFIG_PL353_SMC) += pl353-smc.o
obj-$(CONFIG_RENESAS_RPCIF) += renesas-rpc-if.o
obj-$(CONFIG_STM32_FMC2_EBI) += stm32-fmc2-ebi.o
obj-$(CONFIG_STM32_OMM) += stm32_omm.o
obj-$(CONFIG_SAMSUNG_MC) += samsung/
obj-$(CONFIG_TEGRA_MC) += tegra/

View File

@@ -222,7 +222,7 @@ static ssize_t l2_ctl_latency_show(struct device *dev,
if (ret)
return ret;
return scnprintf(buf, PAGE_SIZE, "%u\n", data);
return sysfs_emit(buf, "%u\n", data);
}
static ssize_t l2_ctl_latency_store(struct device *dev,

View File

@@ -283,6 +283,43 @@ static int mtk_smi_larb_config_port_gen2_general(struct device *dev)
return 0;
}
static const u8 mtk_smi_larb_mt6893_ostd[][SMI_LARB_PORT_NR_MAX] = {
[0] = {0x2, 0x6, 0x2, 0x2, 0x2, 0x28, 0x18, 0x18, 0x1, 0x1, 0x1, 0x8,
0x8, 0x1, 0x3f},
[1] = {0x2, 0x6, 0x2, 0x2, 0x2, 0x28, 0x18, 0x18, 0x1, 0x1, 0x1, 0x8,
0x8, 0x1, 0x3f},
[2] = {0x5, 0x5, 0x5, 0x5, 0x1, 0x3f},
[3] = {0x5, 0x5, 0x5, 0x5, 0x1, 0x3f},
[4] = {0x28, 0x19, 0xb, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x4, 0x1},
[5] = {0x1, 0x1, 0x4, 0x1, 0x1, 0x1, 0x1, 0x16},
[6] = {},
[7] = {0x1, 0x4, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x4, 0x4, 0x1,
0x4, 0x1, 0xa, 0x6, 0x1, 0xa, 0x6, 0x1, 0x1, 0x1, 0x1, 0x5,
0x3, 0x3, 0x4},
[8] = {0x1, 0x4, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x4, 0x4, 0x1,
0x4, 0x1, 0xa, 0x6, 0x1, 0xa, 0x6, 0x1, 0x1, 0x1, 0x1, 0x5,
0x3, 0x3, 0x4},
[9] = {0x9, 0x7, 0xf, 0x8, 0x1, 0x8, 0x9, 0x3, 0x3, 0x6, 0x7, 0x4,
0x9, 0x3, 0x4, 0xe, 0x1, 0x7, 0x8, 0x7, 0x7, 0x1, 0x6, 0x2,
0xf, 0x8, 0x1, 0x1, 0x1},
[10] = {},
[11] = {0x9, 0x7, 0xf, 0x8, 0x1, 0x8, 0x9, 0x3, 0x3, 0x6, 0x7, 0x4,
0x9, 0x3, 0x4, 0xe, 0x1, 0x7, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1,
0x1, 0x1, 0x1, 0x1, 0x1},
[12] = {},
[13] = {0x2, 0xc, 0xc, 0xe, 0x6, 0x6, 0x6, 0x6, 0x6, 0x12, 0x6, 0x1},
[14] = {0x2, 0xc, 0xc, 0x28, 0x12, 0x6},
[15] = {0x28, 0x1, 0x2, 0x28, 0x1},
[16] = {0x28, 0x14, 0x2, 0xc, 0x18, 0x2, 0x14, 0x14, 0x4, 0x4, 0x4, 0x2,
0x4, 0x2, 0x8, 0x4, 0x4},
[17] = {0x28, 0x14, 0x2, 0xc, 0x18, 0x2, 0x14, 0x14, 0x4, 0x4, 0x4, 0x2,
0x4, 0x2, 0x8, 0x4, 0x4},
[18] = {0x28, 0x14, 0x2, 0xc, 0x18, 0x2, 0x14, 0x14, 0x4, 0x4, 0x4, 0x2,
0x4, 0x2, 0x8, 0x4, 0x4},
[19] = {0x2, 0x2, 0x4, 0x2},
[20] = {0x9, 0x9, 0x5, 0x5, 0x1, 0x1},
};
static const u8 mtk_smi_larb_mt8188_ostd[][SMI_LARB_PORT_NR_MAX] = {
[0] = {0x02, 0x18, 0x22, 0x22, 0x01, 0x02, 0x0a,},
[1] = {0x12, 0x02, 0x14, 0x14, 0x01, 0x18, 0x0a,},
@@ -429,6 +466,12 @@ static const struct mtk_smi_larb_gen mtk_smi_larb_mt6779 = {
/* DUMMY | IPU0 | IPU1 | CCU | MDLA */
};
static const struct mtk_smi_larb_gen mtk_smi_larb_mt6893 = {
.config_port = mtk_smi_larb_config_port_gen2_general,
.flags_general = MTK_SMI_FLAG_THRT_UPDATE | MTK_SMI_FLAG_SW_FLAG,
.ostd = mtk_smi_larb_mt6893_ostd,
};
static const struct mtk_smi_larb_gen mtk_smi_larb_mt8167 = {
/* mt8167 do not need the port in larb */
.config_port = mtk_smi_larb_config_port_mt8167,
@@ -474,6 +517,7 @@ static const struct of_device_id mtk_smi_larb_of_ids[] = {
{.compatible = "mediatek,mt2712-smi-larb", .data = &mtk_smi_larb_mt2712},
{.compatible = "mediatek,mt6779-smi-larb", .data = &mtk_smi_larb_mt6779},
{.compatible = "mediatek,mt6795-smi-larb", .data = &mtk_smi_larb_mt8173},
{.compatible = "mediatek,mt6893-smi-larb", .data = &mtk_smi_larb_mt6893},
{.compatible = "mediatek,mt8167-smi-larb", .data = &mtk_smi_larb_mt8167},
{.compatible = "mediatek,mt8173-smi-larb", .data = &mtk_smi_larb_mt8173},
{.compatible = "mediatek,mt8183-smi-larb", .data = &mtk_smi_larb_mt8183},
@@ -694,6 +738,13 @@ static const struct mtk_smi_common_plat mtk_smi_common_mt6795 = {
.init = mtk_smi_common_mt6795_init,
};
static const struct mtk_smi_common_plat mtk_smi_common_mt6893 = {
.type = MTK_SMI_GEN2,
.has_gals = true,
.bus_sel = F_MMU1_LARB(1) | F_MMU1_LARB(2) | F_MMU1_LARB(4) |
F_MMU1_LARB(5) | F_MMU1_LARB(7),
};
static const struct mtk_smi_common_plat mtk_smi_common_mt8183 = {
.type = MTK_SMI_GEN2,
.has_gals = true,
@@ -756,6 +807,7 @@ static const struct of_device_id mtk_smi_common_of_ids[] = {
{.compatible = "mediatek,mt2712-smi-common", .data = &mtk_smi_common_gen2},
{.compatible = "mediatek,mt6779-smi-common", .data = &mtk_smi_common_mt6779},
{.compatible = "mediatek,mt6795-smi-common", .data = &mtk_smi_common_mt6795},
{.compatible = "mediatek,mt6893-smi-common", .data = &mtk_smi_common_mt6893},
{.compatible = "mediatek,mt8167-smi-common", .data = &mtk_smi_common_gen2},
{.compatible = "mediatek,mt8173-smi-common", .data = &mtk_smi_common_gen2},
{.compatible = "mediatek,mt8183-smi-common", .data = &mtk_smi_common_mt8183},

View File

@@ -2376,7 +2376,7 @@ static void gpmc_probe_dt_children(struct platform_device *pdev)
static int gpmc_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
{
return 1; /* we're input only */
return GPIO_LINE_DIRECTION_IN; /* we're input only */
}
static int gpmc_gpio_direction_input(struct gpio_chip *chip,
@@ -2385,17 +2385,6 @@ static int gpmc_gpio_direction_input(struct gpio_chip *chip,
return 0; /* we're input only */
}
static int gpmc_gpio_direction_output(struct gpio_chip *chip,
unsigned int offset, int value)
{
return -EINVAL; /* we're input only */
}
static void gpmc_gpio_set(struct gpio_chip *chip, unsigned int offset,
int value)
{
}
static int gpmc_gpio_get(struct gpio_chip *chip, unsigned int offset)
{
u32 reg;
@@ -2417,8 +2406,6 @@ static int gpmc_gpio_init(struct gpmc_device *gpmc)
gpmc->gpio_chip.ngpio = gpmc_nr_waitpins;
gpmc->gpio_chip.get_direction = gpmc_gpio_get_direction;
gpmc->gpio_chip.direction_input = gpmc_gpio_direction_input;
gpmc->gpio_chip.direction_output = gpmc_gpio_direction_output;
gpmc->gpio_chip.set = gpmc_gpio_set;
gpmc->gpio_chip.get = gpmc_gpio_get;
gpmc->gpio_chip.base = -1;

476
drivers/memory/stm32_omm.c Normal file
View File

@@ -0,0 +1,476 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) STMicroelectronics 2025 - All Rights Reserved
* Author(s): Patrice Chotard <patrice.chotard@foss.st.com> for STMicroelectronics.
*/
#include <linux/bitfield.h>
#include <linux/bus/stm32_firewall_device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/mfd/syscon.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#define OMM_CR 0
#define CR_MUXEN BIT(0)
#define CR_MUXENMODE_MASK GENMASK(1, 0)
#define CR_CSSEL_OVR_EN BIT(4)
#define CR_CSSEL_OVR_MASK GENMASK(6, 5)
#define CR_REQ2ACK_MASK GENMASK(23, 16)
#define OMM_CHILD_NB 2
#define OMM_CLK_NB 3
struct stm32_omm {
struct resource *mm_res;
struct clk_bulk_data clk_bulk[OMM_CLK_NB];
struct reset_control *child_reset[OMM_CHILD_NB];
void __iomem *io_base;
u32 cr;
u8 nb_child;
bool restore_omm;
};
static int stm32_omm_set_amcr(struct device *dev, bool set)
{
struct stm32_omm *omm = dev_get_drvdata(dev);
resource_size_t mm_ospi2_size = 0;
static const char * const mm_name[] = { "ospi1", "ospi2" };
struct regmap *syscfg_regmap;
struct device_node *node;
struct resource res, res1;
u32 amcr_base, amcr_mask;
int ret, idx;
unsigned int i, amcr, read_amcr;
for (i = 0; i < omm->nb_child; i++) {
idx = of_property_match_string(dev->of_node,
"memory-region-names",
mm_name[i]);
if (idx < 0)
continue;
/* res1 only used on second loop iteration */
res1.start = res.start;
res1.end = res.end;
node = of_parse_phandle(dev->of_node, "memory-region", idx);
if (!node)
continue;
ret = of_address_to_resource(node, 0, &res);
if (ret) {
of_node_put(node);
dev_err(dev, "unable to resolve memory region\n");
return ret;
}
/* check that memory region fits inside OMM memory map area */
if (!resource_contains(omm->mm_res, &res)) {
dev_err(dev, "%s doesn't fit inside OMM memory map area\n",
mm_name[i]);
dev_err(dev, "%pR doesn't fit inside %pR\n", &res, omm->mm_res);
of_node_put(node);
return -EFAULT;
}
if (i == 1) {
mm_ospi2_size = resource_size(&res);
/* check that OMM memory region 1 doesn't overlap memory region 2 */
if (resource_overlaps(&res, &res1)) {
dev_err(dev, "OMM memory-region %s overlaps memory region %s\n",
mm_name[0], mm_name[1]);
dev_err(dev, "%pR overlaps %pR\n", &res1, &res);
of_node_put(node);
return -EFAULT;
}
}
of_node_put(node);
}
syscfg_regmap = syscon_regmap_lookup_by_phandle(dev->of_node, "st,syscfg-amcr");
if (IS_ERR(syscfg_regmap))
return dev_err_probe(dev, PTR_ERR(syscfg_regmap),
"Failed to get st,syscfg-amcr property\n");
ret = of_property_read_u32_index(dev->of_node, "st,syscfg-amcr", 1,
&amcr_base);
if (ret)
return ret;
ret = of_property_read_u32_index(dev->of_node, "st,syscfg-amcr", 2,
&amcr_mask);
if (ret)
return ret;
amcr = mm_ospi2_size / SZ_64M;
if (set)
regmap_update_bits(syscfg_regmap, amcr_base, amcr_mask, amcr);
/* read AMCR and check coherency with memory-map areas defined in DT */
regmap_read(syscfg_regmap, amcr_base, &read_amcr);
read_amcr = read_amcr >> (ffs(amcr_mask) - 1);
if (amcr != read_amcr) {
dev_err(dev, "AMCR value not coherent with DT memory-map areas\n");
ret = -EINVAL;
}
return ret;
}
static int stm32_omm_toggle_child_clock(struct device *dev, bool enable)
{
struct stm32_omm *omm = dev_get_drvdata(dev);
int i, ret;
for (i = 0; i < omm->nb_child; i++) {
if (enable) {
ret = clk_prepare_enable(omm->clk_bulk[i + 1].clk);
if (ret) {
dev_err(dev, "Can not enable clock\n");
goto clk_error;
}
} else {
clk_disable_unprepare(omm->clk_bulk[i + 1].clk);
}
}
return 0;
clk_error:
while (i--)
clk_disable_unprepare(omm->clk_bulk[i + 1].clk);
return ret;
}
static int stm32_omm_disable_child(struct device *dev)
{
struct stm32_omm *omm = dev_get_drvdata(dev);
struct reset_control *reset;
int ret;
u8 i;
ret = stm32_omm_toggle_child_clock(dev, true);
if (!ret)
return ret;
for (i = 0; i < omm->nb_child; i++) {
/* reset OSPI to ensure CR_EN bit is set to 0 */
reset = omm->child_reset[i];
ret = reset_control_acquire(reset);
if (ret) {
stm32_omm_toggle_child_clock(dev, false);
dev_err(dev, "Can not acquire resset %d\n", ret);
return ret;
}
reset_control_assert(reset);
udelay(2);
reset_control_deassert(reset);
reset_control_release(reset);
}
return stm32_omm_toggle_child_clock(dev, false);
}
static int stm32_omm_configure(struct device *dev)
{
static const char * const clocks_name[] = {"omm", "ospi1", "ospi2"};
struct stm32_omm *omm = dev_get_drvdata(dev);
unsigned long clk_rate_max = 0;
u32 mux = 0;
u32 cssel_ovr = 0;
u32 req2ack = 0;
struct reset_control *rstc;
unsigned long clk_rate;
int ret;
u8 i;
for (i = 0; i < OMM_CLK_NB; i++)
omm->clk_bulk[i].id = clocks_name[i];
/* retrieve OMM, OSPI1 and OSPI2 clocks */
ret = devm_clk_bulk_get(dev, OMM_CLK_NB, omm->clk_bulk);
if (ret)
return dev_err_probe(dev, ret, "Failed to get OMM/OSPI's clocks\n");
/* Ensure both OSPI instance are disabled before configuring OMM */
ret = stm32_omm_disable_child(dev);
if (ret)
return ret;
ret = pm_runtime_resume_and_get(dev);
if (ret < 0)
return ret;
/* parse children's clock */
for (i = 1; i <= omm->nb_child; i++) {
clk_rate = clk_get_rate(omm->clk_bulk[i].clk);
if (!clk_rate) {
dev_err(dev, "Invalid clock rate\n");
goto error;
}
if (clk_rate > clk_rate_max)
clk_rate_max = clk_rate;
}
rstc = devm_reset_control_get_exclusive(dev, "omm");
if (IS_ERR(rstc))
return dev_err_probe(dev, PTR_ERR(rstc), "reset get failed\n");
reset_control_assert(rstc);
udelay(2);
reset_control_deassert(rstc);
omm->cr = readl_relaxed(omm->io_base + OMM_CR);
/* optional */
ret = of_property_read_u32(dev->of_node, "st,omm-mux", &mux);
if (!ret) {
if (mux & CR_MUXEN) {
ret = of_property_read_u32(dev->of_node, "st,omm-req2ack-ns",
&req2ack);
if (!ret && !req2ack) {
req2ack = DIV_ROUND_UP(req2ack, NSEC_PER_SEC / clk_rate_max) - 1;
if (req2ack > 256)
req2ack = 256;
}
req2ack = FIELD_PREP(CR_REQ2ACK_MASK, req2ack);
omm->cr &= ~CR_REQ2ACK_MASK;
omm->cr |= FIELD_PREP(CR_REQ2ACK_MASK, req2ack);
/*
* If the mux is enabled, the 2 OSPI clocks have to be
* always enabled
*/
ret = stm32_omm_toggle_child_clock(dev, true);
if (ret)
goto error;
}
omm->cr &= ~CR_MUXENMODE_MASK;
omm->cr |= FIELD_PREP(CR_MUXENMODE_MASK, mux);
}
/* optional */
ret = of_property_read_u32(dev->of_node, "st,omm-cssel-ovr", &cssel_ovr);
if (!ret) {
omm->cr &= ~CR_CSSEL_OVR_MASK;
omm->cr |= FIELD_PREP(CR_CSSEL_OVR_MASK, cssel_ovr);
omm->cr |= CR_CSSEL_OVR_EN;
}
omm->restore_omm = true;
writel_relaxed(omm->cr, omm->io_base + OMM_CR);
ret = stm32_omm_set_amcr(dev, true);
error:
pm_runtime_put_sync_suspend(dev);
return ret;
}
static int stm32_omm_check_access(struct device_node *np)
{
struct stm32_firewall firewall;
int ret;
ret = stm32_firewall_get_firewall(np, &firewall, 1);
if (ret)
return ret;
return stm32_firewall_grant_access(&firewall);
}
static int stm32_omm_probe(struct platform_device *pdev)
{
static const char * const resets_name[] = {"ospi1", "ospi2"};
struct device *dev = &pdev->dev;
u8 child_access_granted = 0;
struct stm32_omm *omm;
int i, ret;
omm = devm_kzalloc(dev, sizeof(*omm), GFP_KERNEL);
if (!omm)
return -ENOMEM;
omm->io_base = devm_platform_ioremap_resource_byname(pdev, "regs");
if (IS_ERR(omm->io_base))
return PTR_ERR(omm->io_base);
omm->mm_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "memory_map");
if (IS_ERR(omm->mm_res))
return PTR_ERR(omm->mm_res);
/* check child's access */
for_each_child_of_node_scoped(dev->of_node, child) {
if (omm->nb_child >= OMM_CHILD_NB) {
dev_err(dev, "Bad DT, found too much children\n");
return -E2BIG;
}
ret = stm32_omm_check_access(child);
if (ret < 0 && ret != -EACCES)
return ret;
if (!ret)
child_access_granted++;
omm->nb_child++;
}
if (omm->nb_child != OMM_CHILD_NB)
return -EINVAL;
platform_set_drvdata(pdev, omm);
devm_pm_runtime_enable(dev);
/* check if OMM's resource access is granted */
ret = stm32_omm_check_access(dev->of_node);
if (ret < 0 && ret != -EACCES)
return ret;
for (i = 0; i < omm->nb_child; i++) {
omm->child_reset[i] = devm_reset_control_get_exclusive_released(dev,
resets_name[i]);
if (IS_ERR(omm->child_reset[i]))
return dev_err_probe(dev, PTR_ERR(omm->child_reset[i]),
"Can't get %s reset\n", resets_name[i]);
}
if (!ret && child_access_granted == OMM_CHILD_NB) {
ret = stm32_omm_configure(dev);
if (ret)
return ret;
} else {
dev_dbg(dev, "Octo Memory Manager resource's access not granted\n");
/*
* AMCR can't be set, so check if current value is coherent
* with memory-map areas defined in DT
*/
ret = stm32_omm_set_amcr(dev, false);
if (ret)
return ret;
}
ret = devm_of_platform_populate(dev);
if (ret) {
if (omm->cr & CR_MUXEN)
stm32_omm_toggle_child_clock(&pdev->dev, false);
return dev_err_probe(dev, ret, "Failed to create Octo Memory Manager child\n");
}
return 0;
}
static void stm32_omm_remove(struct platform_device *pdev)
{
struct stm32_omm *omm = platform_get_drvdata(pdev);
if (omm->cr & CR_MUXEN)
stm32_omm_toggle_child_clock(&pdev->dev, false);
}
static const struct of_device_id stm32_omm_of_match[] = {
{ .compatible = "st,stm32mp25-omm", },
{}
};
MODULE_DEVICE_TABLE(of, stm32_omm_of_match);
static int __maybe_unused stm32_omm_runtime_suspend(struct device *dev)
{
struct stm32_omm *omm = dev_get_drvdata(dev);
clk_disable_unprepare(omm->clk_bulk[0].clk);
return 0;
}
static int __maybe_unused stm32_omm_runtime_resume(struct device *dev)
{
struct stm32_omm *omm = dev_get_drvdata(dev);
return clk_prepare_enable(omm->clk_bulk[0].clk);
}
static int __maybe_unused stm32_omm_suspend(struct device *dev)
{
struct stm32_omm *omm = dev_get_drvdata(dev);
if (omm->restore_omm && omm->cr & CR_MUXEN)
stm32_omm_toggle_child_clock(dev, false);
return pinctrl_pm_select_sleep_state(dev);
}
static int __maybe_unused stm32_omm_resume(struct device *dev)
{
struct stm32_omm *omm = dev_get_drvdata(dev);
int ret;
pinctrl_pm_select_default_state(dev);
if (!omm->restore_omm)
return 0;
/* Ensure both OSPI instance are disabled before configuring OMM */
ret = stm32_omm_disable_child(dev);
if (ret)
return ret;
ret = pm_runtime_resume_and_get(dev);
if (ret < 0)
return ret;
writel_relaxed(omm->cr, omm->io_base + OMM_CR);
ret = stm32_omm_set_amcr(dev, true);
pm_runtime_put_sync_suspend(dev);
if (ret)
return ret;
if (omm->cr & CR_MUXEN)
ret = stm32_omm_toggle_child_clock(dev, true);
return ret;
}
static const struct dev_pm_ops stm32_omm_pm_ops = {
SET_RUNTIME_PM_OPS(stm32_omm_runtime_suspend,
stm32_omm_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(stm32_omm_suspend, stm32_omm_resume)
};
static struct platform_driver stm32_omm_driver = {
.probe = stm32_omm_probe,
.remove = stm32_omm_remove,
.driver = {
.name = "stm32-omm",
.of_match_table = stm32_omm_of_match,
.pm = &stm32_omm_pm_ops,
},
};
module_platform_driver(stm32_omm_driver);
MODULE_DESCRIPTION("STMicroelectronics Octo Memory Manager driver");
MODULE_LICENSE("GPL");

View File

@@ -1,7 +1,7 @@
# SPDX-License-Identifier: GPL-2.0-only
config TEGRA_MC
bool "NVIDIA Tegra Memory Controller support"
default y
default ARCH_TEGRA
depends on ARCH_TEGRA || (COMPILE_TEST && COMMON_CLK)
select INTERCONNECT
help
@@ -12,7 +12,7 @@ if TEGRA_MC
config TEGRA20_EMC
tristate "NVIDIA Tegra20 External Memory Controller driver"
default y
default ARCH_TEGRA_2x_SOC
depends on ARCH_TEGRA_2x_SOC || COMPILE_TEST
select DEVFREQ_GOV_SIMPLE_ONDEMAND
select PM_DEVFREQ
@@ -25,7 +25,7 @@ config TEGRA20_EMC
config TEGRA30_EMC
tristate "NVIDIA Tegra30 External Memory Controller driver"
default y
default ARCH_TEGRA_3x_SOC
depends on ARCH_TEGRA_3x_SOC || COMPILE_TEST
select PM_OPP
select DDR
@@ -37,7 +37,7 @@ config TEGRA30_EMC
config TEGRA124_EMC
tristate "NVIDIA Tegra124 External Memory Controller driver"
default y
default ARCH_TEGRA_124_SOC
depends on ARCH_TEGRA_124_SOC || COMPILE_TEST
select TEGRA124_CLK_EMC if ARCH_TEGRA
select PM_OPP

View File

@@ -114,27 +114,30 @@ void stm32_firewall_release_access_by_id(struct stm32_firewall *firewall, u32 su
#else /* CONFIG_STM32_FIREWALL */
int stm32_firewall_get_firewall(struct device_node *np, struct stm32_firewall *firewall,
unsigned int nb_firewall)
static inline int stm32_firewall_get_firewall(struct device_node *np,
struct stm32_firewall *firewall,
unsigned int nb_firewall)
{
return -ENODEV;
}
int stm32_firewall_grant_access(struct stm32_firewall *firewall)
static inline int stm32_firewall_grant_access(struct stm32_firewall *firewall)
{
return -ENODEV;
}
void stm32_firewall_release_access(struct stm32_firewall *firewall)
static inline void stm32_firewall_release_access(struct stm32_firewall *firewall)
{
}
int stm32_firewall_grant_access_by_id(struct stm32_firewall *firewall, u32 subsystem_id)
static inline int stm32_firewall_grant_access_by_id(struct stm32_firewall *firewall,
u32 subsystem_id)
{
return -ENODEV;
}
void stm32_firewall_release_access_by_id(struct stm32_firewall *firewall, u32 subsystem_id)
static inline void stm32_firewall_release_access_by_id(struct stm32_firewall *firewall,
u32 subsystem_id)
{
}