Let's extend mmap_and_merge_range() to test if anything in the current
process was merged. range_maps_duplicates() is too unreliable for that
use case, so instead look at KSM stats.
Trigger a complete unmerge first, to cleanup the stable tree and
stabilize accounting of merged pages.
Note that we're using /proc/self/ksm_merging_pages instead of
/proc/self/ksm_stat, because that one is available in more existing
kernels.
If /proc/self/ksm_merging_pages can't be opened, we can't perform any
checks and simply skip them.
We have to special-case the shared zeropage for now. But the only user
-- test_unmerge_zero_pages() -- performs its own merge checks.
Link: https://lkml.kernel.org/r/20230803143208.383663-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: liubo <liubo254@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Commit 0b9d705297 ("mm: numa: Support NUMA hinting page faults from
gup/gup_fast") from 2012 documented as the primary reason why we would want
to handle NUMA hinting faults from GUP:
KVM secondary MMU page faults will trigger the NUMA hinting page
faults through gup_fast -> get_user_pages -> follow_page ->
handle_mm_fault.
That is still the case today, and relevant KVM code has been converted to
manually set FOLL_HONOR_NUMA_FAULT. So let's stop setting
FOLL_HONOR_NUMA_FAULT for all GUP users and cross fingers that not that
many other ones that really require such handling for autonuma remain.
Possible interaction with MMU notifiers:
Assume a driver obtains a page using get_user_pages() to map it into
a secondary MMU, and uses the MMU notifier framework to get notified on
changes.
Assume get_user_pages() succeeded on a PROT_NONE-mapped page (because
FOLL_HONOR_NUMA_FAULT is not set) in an accessible VMA and the page is
mapped into a secondary MMU. Once user space would turn that mapping
inaccessible using mprotect(PROT_NONE), the actual PTE in the page table
might not change. If the MMU notifier would be smart and optimize for that
case "why notify if the PTE didn't change", that could be problematic.
At least change_pmd_range() with MMU_NOTIFY_PROTECTION_VMA for now does an
unconditional mmu_notifier_invalidate_range_start() ->
mmu_notifier_invalidate_range_end() and should be fine.
Note that even if a PTE in an accessible VMA is pte_protnone(), the
underlying page might be accessed by a secondary MMU that does not set
FOLL_HONOR_NUMA_FAULT, and test_young() MMU notifiers would return "true".
Link: https://lkml.kernel.org/r/20230803143208.383663-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: liubo <liubo254@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
KVM is *the* case we know that really wants to honor NUMA hinting falls.
As we want to stop setting FOLL_HONOR_NUMA_FAULT implicitly, set
FOLL_HONOR_NUMA_FAULT whenever we might obtain pages on behalf of a VCPU
to map them into a secondary MMU, and add a comment why.
Do that unconditionally in hva_to_pfn_slow() when calling
get_user_pages_unlocked().
kvmppc_book3s_instantiate_page(), hva_to_pfn_fast() and
gfn_to_page_many_atomic() are similarly used to map pages into a
secondary MMU. However, FOLL_WRITE and get_user_page_fast_only() always
implicitly honor NUMA hinting faults -- as documented for
FOLL_HONOR_NUMA_FAULT -- so we can limit this change to a single location
for now.
Don't set it in check_user_page_hwpoison(), where we really only want to
check if the mapped page is HW-poisoned.
We won't set it for other KVM users of get_user_pages()/pin_user_pages()
* arch/powerpc/kvm/book3s_64_mmu_hv.c: not used to map pages into a
secondary MMU.
* arch/powerpc/kvm/e500_mmu.c: only used on shared TLB pages with userspace
* arch/s390/kvm/*: s390x only supports a single NUMA node either way
* arch/x86/kvm/svm/sev.c: not used to map pages into a secondary MMU.
This is a preparation for making FOLL_HONOR_NUMA_FAULT no longer
implicitly be set by get_user_pages() and friends.
Link: https://lkml.kernel.org/r/20230803143208.383663-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: liubo <liubo254@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm/kmemleak: use object_cache instead of
kmemleak_initialized", v3.
Use object_cache instead of kmemleak_initialized to check in
set_track_prepare(), so that memory leaks after kmemleak_init() can be
recorded and Rename kmemleak_initialized to kmemleak_late_initialized
unreferenced object 0xc674ca80 (size 64):
comm "swapper/0", pid 1, jiffies 4294938337 (age 204.880s)
hex dump (first 32 bytes):
80 55 75 c6 80 54 75 c6 00 55 75 c6 80 52 75 c6 .Uu..Tu..Uu..Ru.
00 53 75 c6 00 00 00 00 00 00 00 00 00 00 00 00 .Su..........
This patch (of 2):
kmemleak_initialized is set in kmemleak_late_init(), which also means that
there is no call trace which object's memory leak is before
kmemleak_late_init(), so use object_cache instead of kmemleak_initialized
to check in set_track_prepare() to avoid no call trace records when there
is a memory leak in the code between kmemleak_init() and
kmemleak_late_init().
unreferenced object 0xc674ca80 (size 64):
comm "swapper/0", pid 1, jiffies 4294938337 (age 204.880s)
hex dump (first 32 bytes):
80 55 75 c6 80 54 75 c6 00 55 75 c6 80 52 75 c6 .Uu..Tu..Uu..Ru.
00 53 75 c6 00 00 00 00 00 00 00 00 00 00 00 00 .Su..........
Link: https://lkml.kernel.org/r/20230815144128.3623103-1-xiaolei.wang@windriver.com
Link: https://lkml.kernel.org/r/20230815144128.3623103-2-xiaolei.wang@windriver.com
Fixes: 56a61617dd ("mm: use stack_depot for recording kmemleak's backtrace")
Signed-off-by: Xiaolei Wang <xiaolei.wang@windriver.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zhaoyang Huang <zhaoyang.huang@unisoc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Extract from current /proc/self/smaps output:
Swap: 0 kB
SwapPss: 0 kB
Locked: 0 kB
THPeligible: 0
ProtectionKey: 0
That's not the alignment shown in Documentation/filesystems/proc.rst: it's
an ugly artifact from missing out the %8 other fields are using; but
there's even one selftest which expects it to look that way. Hoping no
other smaps parsers depend on THPeligible to look so ugly, fix these.
Link: https://lkml.kernel.org/r/cfb81f7a-f448-5bc2-b0e1-8136fcd1dd8c@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This sysctl has the very unusual behaviour of not allowing any user (even
CAP_SYS_ADMIN) to reduce the restriction setting, meaning that if you were
to set this sysctl to a more restrictive option in the host pidns you
would need to reboot your machine in order to reset it.
The justification given in [1] is that this is a security feature and thus
it should not be possible to disable. Aside from the fact that we have
plenty of security-related sysctls that can be disabled after being
enabled (fs.protected_symlinks for instance), the protection provided by
the sysctl is to stop users from being able to create a binary and then
execute it. A user with CAP_SYS_ADMIN can trivially do this without
memfd_create(2):
% cat mount-memfd.c
#include <fcntl.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <linux/mount.h>
#define SHELLCODE "#!/bin/echo this file was executed from this totally private tmpfs:"
int main(void)
{
int fsfd = fsopen("tmpfs", FSOPEN_CLOEXEC);
assert(fsfd >= 0);
assert(!fsconfig(fsfd, FSCONFIG_CMD_CREATE, NULL, NULL, 2));
int dfd = fsmount(fsfd, FSMOUNT_CLOEXEC, 0);
assert(dfd >= 0);
int execfd = openat(dfd, "exe", O_CREAT | O_RDWR | O_CLOEXEC, 0782);
assert(execfd >= 0);
assert(write(execfd, SHELLCODE, strlen(SHELLCODE)) == strlen(SHELLCODE));
assert(!close(execfd));
char *execpath = NULL;
char *argv[] = { "bad-exe", NULL }, *envp[] = { NULL };
execfd = openat(dfd, "exe", O_PATH | O_CLOEXEC);
assert(execfd >= 0);
assert(asprintf(&execpath, "/proc/self/fd/%d", execfd) > 0);
assert(!execve(execpath, argv, envp));
}
% ./mount-memfd
this file was executed from this totally private tmpfs: /proc/self/fd/5
%
Given that it is possible for CAP_SYS_ADMIN users to create executable
binaries without memfd_create(2) and without touching the host filesystem
(not to mention the many other things a CAP_SYS_ADMIN process would be
able to do that would be equivalent or worse), it seems strange to cause a
fair amount of headache to admins when there doesn't appear to be an
actual security benefit to blocking this. There appear to be concerns
about confused-deputy-esque attacks[2] but a confused deputy that can
write to arbitrary sysctls is a bigger security issue than executable
memfds.
/* New API */
The primary requirement from the original author appears to be more based
on the need to be able to restrict an entire system in a hierarchical
manner[3], such that child namespaces cannot re-enable executable memfds.
So, implement that behaviour explicitly -- the vm.memfd_noexec scope is
evaluated up the pidns tree to &init_pid_ns and you have the most
restrictive value applied to you. The new lower limit you can set
vm.memfd_noexec is whatever limit applies to your parent.
Note that a pidns will inherit a copy of the parent pidns's effective
vm.memfd_noexec setting at unshare() time. This matches the existing
behaviour, and it also ensures that a pidns will never have its
vm.memfd_noexec setting *lowered* behind its back (but it will be raised
if the parent raises theirs).
/* Backwards Compatibility */
As the previous version of the sysctl didn't allow you to lower the
setting at all, there are no backwards compatibility issues with this
aspect of the change.
However it should be noted that now that the setting is completely
hierarchical. Previously, a cloned pidns would just copy the current
pidns setting, meaning that if the parent's vm.memfd_noexec was changed it
wouldn't propoagate to existing pid namespaces. Now, the restriction
applies recursively. This is a uAPI change, however:
* The sysctl is very new, having been merged in 6.3.
* Several aspects of the sysctl were broken up until this patchset and
the other patchset by Jeff Xu last month.
And thus it seems incredibly unlikely that any real users would run into
this issue. In the worst case, if this causes userspace isues we could
make it so that modifying the setting follows the hierarchical rules but
the restriction checking uses the cached copy.
[1]: https://lore.kernel.org/CABi2SkWnAgHK1i6iqSqPMYuNEhtHBkO8jUuCvmG3RmUB5TKHJw@mail.gmail.com/
[2]: https://lore.kernel.org/CALmYWFs_dNCzw_pW1yRAo4bGCPEtykroEQaowNULp7svwMLjOg@mail.gmail.com/
[3]: https://lore.kernel.org/CALmYWFuahdUF7cT4cm7_TGLqPanuHXJ-hVSfZt7vpTnc18DPrw@mail.gmail.com/
Link: https://lkml.kernel.org/r/20230814-memfd-vm-noexec-uapi-fixes-v2-4-7ff9e3e10ba6@cyphar.com
Fixes: 105ff5339f ("mm/memfd: add MFD_NOEXEC_SEAL and MFD_EXEC")
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Cc: Dominique Martinet <asmadeus@codewreck.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Daniel Verkamp <dverkamp@chromium.org>
Cc: Jeff Xu <jeffxu@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Given the difficulty of auditing all of userspace to figure out whether
every memfd_create() user has switched to passing MFD_EXEC and
MFD_NOEXEC_SEAL flags, it seems far less distruptive to make it possible
for older programs that don't make use of executable memfds to run under
vm.memfd_noexec=2. Otherwise, a small dependency change can result in
spurious errors. For programs that don't use executable memfds, passing
MFD_NOEXEC_SEAL is functionally a no-op and thus having the same
In addition, every failure under vm.memfd_noexec=2 needs to print to the
kernel log so that userspace can figure out where the error came from.
The concerns about pr_warn_ratelimited() spam that caused the switch to
pr_warn_once()[1,2] do not apply to the vm.memfd_noexec=2 case.
This is a user-visible API change, but as it allows programs to do
something that would be blocked before, and the sysctl itself was broken
and recently released, it seems unlikely this will cause any issues.
[1]: https://lore.kernel.org/Y5yS8wCnuYGLHMj4@x1n/
[2]: https://lore.kernel.org/202212161233.85C9783FB@keescook/
Link: https://lkml.kernel.org/r/20230814-memfd-vm-noexec-uapi-fixes-v2-2-7ff9e3e10ba6@cyphar.com
Fixes: 105ff5339f ("mm/memfd: add MFD_NOEXEC_SEAL and MFD_EXEC")
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Cc: Dominique Martinet <asmadeus@codewreck.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Daniel Verkamp <dverkamp@chromium.org>
Cc: Jeff Xu <jeffxu@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "memfd: cleanups for vm.memfd_noexec", v2.
The most critical issue with vm.memfd_noexec=2 (the fact that passing
MFD_EXEC would bypass it entirely[1]) has been fixed in Andrew's
tree[2], but there are still some outstanding issues that need to be
addressed:
* vm.memfd_noexec=2 shouldn't reject old-style memfd_create(2) syscalls
because it will make it far to difficult to ever migrate. Instead it
should imply MFD_EXEC.
* The dmesg warnings are pr_warn_once(), which on most systems means
that they will be used up by systemd or some other boot process and
userspace developers will never see it.
- For the !(flags & (MFD_EXEC | MFD_NOEXEC_SEAL)) case, outputting a
rate-limited message to the kernel log is necessary to tell
userspace that they should add the new flags.
Arguably the most ideal way to deal with the spam concern[3,4]
while still prompting userspace to switch to the new flags would be
to only log the warning once per task or something similar.
However, adding something to task_struct for tracking this would be
needless bloat for a single pr_warn_ratelimited().
So just switch to pr_info_ratelimited() to avoid spamming the log
with something that isn't a real warning. There's lots of
info-level stuff in dmesg, it seems really unlikely that this
should be an actual problem. Most programs are already switching to
the new flags anyway.
- For the vm.memfd_noexec=2 case, we need to log a warning for every
failure because otherwise userspace will have no idea why their
previously working program started returning -EACCES (previously
-EINVAL) from memfd_create(2). pr_warn_once() is simply wrong here.
* The racheting mechanism for vm.memfd_noexec makes it incredibly
unappealing for most users to enable the sysctl because enabling it
on &init_pid_ns means you need a system reboot to unset it. Given the
actual security threat being protected against, CAP_SYS_ADMIN users
being restricted in this way makes little sense.
The argument for this ratcheting by the original author was that it
allows you to have a hierarchical setting that cannot be unset by
child pidnses, but this is not accurate -- changing the parent
pidns's vm.memfd_noexec setting to be more restrictive didn't affect
children.
Instead, switch the vm.memfd_noexec sysctl to be properly
hierarchical and allow CAP_SYS_ADMIN users (in the pidns's owning
userns) to lower the setting as long as it is not lower than the
parent's effective setting. This change also makes it so that
changing a parent pidns's vm.memfd_noexec will affect all
descendants, providing a properly hierarchical setting. The
performance impact of this is incredibly minimal since the maximum
depth of pidns is 32 and it is only checked during memfd_create(2)
and unshare(CLONE_NEWPID).
* The memfd selftests would not exit with a non-zero error code when
certain tests that ran in a forked process (specifically the ones
related to MFD_EXEC and MFD_NOEXEC_SEAL) failed.
[1]: https://lore.kernel.org/all/ZJwcsU0vI-nzgOB_@codewreck.org/
[2]: https://lore.kernel.org/all/20230705063315.3680666-1-jeffxu@google.com/
[3]: https://lore.kernel.org/Y5yS8wCnuYGLHMj4@x1n/
[4]: https://lore.kernel.org/f185bb42-b29c-977e-312e-3349eea15383@linuxfoundation.org/
This patch (of 5):
Before this change, a test runner using this self test would see a return
code of 0 when the tests using a child process (namely the MFD_NOEXEC_SEAL
and MFD_EXEC tests) failed, masking test failures.
Link: https://lkml.kernel.org/r/20230814-memfd-vm-noexec-uapi-fixes-v2-0-7ff9e3e10ba6@cyphar.com
Link: https://lkml.kernel.org/r/20230814-memfd-vm-noexec-uapi-fixes-v2-1-7ff9e3e10ba6@cyphar.com
Fixes: 11f75a0144 ("selftests/memfd: add tests for MFD_NOEXEC_SEAL MFD_EXEC")
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Reviewed-by: Jeff Xu <jeffxu@google.com>
Cc: "Christian Brauner (Microsoft)" <brauner@kernel.org>
Cc: Daniel Verkamp <dverkamp@chromium.org>
Cc: Dominique Martinet <asmadeus@codewreck.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>